Abstract

Electron transport and electron-hole balance are the essential processes that determine the efficiency and luminance of quantum dot light emitting diodes (QLEDs). Those structures with a good capability of fast electron transport and charge balance are needed. We developed a novel composite electron transport layer (ETL) consisting of zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO) nanoparticles for the QLED devices, which can enhance EQE to 13.5%. It is 1.29 times and 1.33 times compared with that of pure ZnO and ZnMgO nanoparticles, respectively. The luminance intensity was increased up to 22100 cd/m2 at a voltage of 8.8 V. The current-voltage of electron-only devices measurement results indicate that the composite ETL generates higher current than the nano-particulate ZnMgO layer. Meanwhile, the QLEDs with ZnMgO:ZnO ETLs exhibit lower leakage current densities at the turn on voltage than that with pure ZnO ETL. Transient measurement results indicate that the composite ETL can keep a charge balance more effectively than a conventional ZnO nano-particulate layer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

Efficient light-emitting diodes based on reverse type-I quantum dots

Xiao Jin, Jinke Bai, Xiaobing Gu, Chun Chang, Huaibin Shen, Qin Zhang, Feng Li, Zhongping Chen, and Qinghua Li
Opt. Mater. Express 7(12) 4395-4407 (2017)

Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact

Yue-Qi Liu, Dan-Dan Zhang, Huai-Xin Wei, Qing-Dong Ou, Yan-Qing Li, and Jian-Xin Tang
Opt. Mater. Express 7(7) 2161-2167 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Freeman and I. Willner, “Optical molecular sensing with semiconductor quantum dots (QDs),” Chem. Soc. Rev. 41(10), 4067–4085 (2012).
    [Crossref] [PubMed]
  2. Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
    [Crossref] [PubMed]
  3. J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
    [Crossref] [PubMed]
  4. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
    [Crossref]
  5. J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
    [Crossref] [PubMed]
  6. J. H. Kim and H. Yang, “All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device,” Opt. Lett. 39(17), 5002–5005 (2014).
    [Crossref] [PubMed]
  7. Y. Kim, C. Ippen, T. Greco, J. Lee, M. S. Oh, C. J. Han, A. Wedel, and J. Kim, “Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes,” Opt. Mater. Express 4(7), 1436–1443 (2014).
    [Crossref]
  8. Y.-Q. Liu, D.-D. Zhang, H.-X. Wei, Q.-D. Ou, Y.-Q. Li, and J.-X. Tang, “Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact,” Opt. Mater. Express 7(7), 2161–2167 (2017).
    [Crossref]
  9. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(4), 354–357 (1994).
    [Crossref]
  10. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
    [Crossref]
  11. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
    [Crossref]
  12. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
    [Crossref] [PubMed]
  13. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
    [Crossref]
  14. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref] [PubMed]
  15. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
    [Crossref]
  16. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
    [Crossref]
  17. I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
    [Crossref] [PubMed]
  18. S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
    [Crossref] [PubMed]
  19. S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
    [Crossref]
  20. A. W. Cohn, K. R. Kittilstved, and D. R. Gamelin, “Tuning the potentials of “extra” electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution,” J. Am. Chem. Soc. 134(18), 7937–7943 (2012).
    [Crossref] [PubMed]
  21. D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
    [Crossref]
  22. X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
    [Crossref]
  23. Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
    [Crossref] [PubMed]
  24. M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
    [Crossref] [PubMed]

2017 (5)

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

Y.-Q. Liu, D.-D. Zhang, H.-X. Wei, Q.-D. Ou, Y.-Q. Li, and J.-X. Tang, “Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact,” Opt. Mater. Express 7(7), 2161–2167 (2017).
[Crossref]

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref] [PubMed]

2016 (2)

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref] [PubMed]

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

2015 (3)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref] [PubMed]

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

2012 (2)

R. Freeman and I. Willner, “Optical molecular sensing with semiconductor quantum dots (QDs),” Chem. Soc. Rev. 41(10), 4067–4085 (2012).
[Crossref] [PubMed]

A. W. Cohn, K. R. Kittilstved, and D. R. Gamelin, “Tuning the potentials of “extra” electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution,” J. Am. Chem. Soc. 134(18), 7937–7943 (2012).
[Crossref] [PubMed]

2011 (1)

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

2008 (2)

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

2007 (2)

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

1994 (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(4), 354–357 (1994).
[Crossref]

1993 (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Alivisatos, A. P.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(4), 354–357 (1994).
[Crossref]

Bae, W. K.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Bawendi, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Bawendi, M. G.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Breen, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Bulovic, V.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Cao, S.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Cao, W.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Caruge, J. M.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Chang, J. H.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Char, K.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Chen, J.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Chen, L.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Chen, Z.

Cho, I.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Cho, J.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Coe-Sullivan, S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Cohn, A. W.

A. W. Cohn, K. R. Kittilstved, and D. R. Gamelin, “Tuning the potentials of “extra” electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution,” J. Am. Chem. Soc. 134(18), 7937–7943 (2012).
[Crossref] [PubMed]

Collins, R. T.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(4), 354–357 (1994).
[Crossref]

Dai, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Do, Y. R.

Du, Z.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

Fang, Y.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

Feng, D.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

Freeman, R.

R. Freeman and I. Willner, “Optical molecular sensing with semiconductor quantum dots (QDs),” Chem. Soc. Rev. 41(10), 4067–4085 (2012).
[Crossref] [PubMed]

Gamelin, D. R.

A. W. Cohn, K. R. Kittilstved, and D. R. Gamelin, “Tuning the potentials of “extra” electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution,” J. Am. Chem. Soc. 134(18), 7937–7943 (2012).
[Crossref] [PubMed]

Gannott, F.

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

Gao, Y.

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref] [PubMed]

Ginley, D. S.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Greco, T.

Gu, X.

Guan, X.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Guo, Y.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

Halpert, J. E.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Hamilton, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Han, C. J.

Han, C. Y.

Held, M.

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

Holloway, P. H.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Huang, Q.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Ippen, C.

Jang, E. P.

Jeong, B. G.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Ji, W.

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Jiang, J.

Jin, X.

Jin, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Jing, P.

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Jo, J. H.

Jung, H.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Kazlas, P. T.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Khan, Q.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Kim, J.

Kim, J. H.

Kim, Y.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Y. Kim, C. Ippen, T. Greco, J. Lee, M. S. Oh, C. J. Han, A. Wedel, and J. Kim, “Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes,” Opt. Mater. Express 4(7), 1436–1443 (2014).
[Crossref]

Kittilstved, K. R.

A. W. Cohn, K. R. Kittilstved, and D. R. Gamelin, “Tuning the potentials of “extra” electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution,” J. Am. Chem. Soc. 134(18), 7937–7943 (2012).
[Crossref] [PubMed]

Lee, C.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Lee, D. C.

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

Lee, J.

Lee, K. H.

Lei, W.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Li, C.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Li, F.

Li, G.

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Li, L.

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Li, L. S.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Li, Q.

Li, Y.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Li, Y.-Q.

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Liu, J.

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Liu, X.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Liu, Y.-Q.

Mashford, B. S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Mitchell, W. J.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Murray, C. B.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Nathan, A.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Norris, D. J.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Oh, M. S.

Olson, D. C.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Ou, Q.-D.

Pan, J.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Peng, X.

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref] [PubMed]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Popovic, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Qian, L.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Qiu, X.

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(4), 354–357 (1994).
[Crossref]

Schornbaum, J.

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

Shaheen, S. E.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Shang, M.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Shen, H.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Shewmon, N. T.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Song, Y.

Steckel, J.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Stevenson, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Sun, M.

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Sun, X.

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Tang, J.-X.

Tao, Z.

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Thiemann, S.

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

van Hest, M. F. A. M.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Wang, D.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Wang, J.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Wang, S.

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

Wang, X.

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Wang, Y. A.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Wedel, A.

Wei, H.-X.

Wei, J.

White, M. S.

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Willner, I.

R. Freeman and I. Willner, “Optical molecular sensing with semiconductor quantum dots (QDs),” Chem. Soc. Rev. 41(10), 4067–4085 (2012).
[Crossref] [PubMed]

Wood, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

Wu, T.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Xiang, W.

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Xu, J.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Xue, J.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Yang, C.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Yang, H.

Yang, W.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Yang, Z.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

Zakharko, Y.

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

Zaumseil, J.

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

Zhang, D.-D.

Zhang, Q.

Zhang, Z.

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref] [PubMed]

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Zhao, J.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Zheng, J.

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Zheng, Y.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Zhou, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Zhu, D.

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

Zhu, T.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (2)

S. Cao, J. Zheng, J. Zhao, Z. Yang, C. Li, X. Guan, W. Yang, M. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Interfaces 9(18), 15605–15614 (2017).
[Crossref] [PubMed]

M. Sun, D. Zhu, W. Ji, P. Jing, X. Wang, W. Xiang, and J. Zhao, “Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes,” ACS Appl. Mater. Interfaces 5(23), 12681–12688 (2013).
[Crossref] [PubMed]

ACS Nano (1)

I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, “Multi-functional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes,” ACS Nano 11(1), 684–692 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” ACS Photonics 3(2), 215–222 (2016).
[Crossref]

Adv. Funct. Mater. (1)

D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007).
[Crossref]

Chem. Soc. Rev. (1)

R. Freeman and I. Willner, “Optical molecular sensing with semiconductor quantum dots (QDs),” Chem. Soc. Rev. 41(10), 4067–4085 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref] [PubMed]

A. W. Cohn, K. R. Kittilstved, and D. R. Gamelin, “Tuning the potentials of “extra” electrons in colloidal n-type ZnO nanocrystals via Mg2+ substitution,” J. Am. Chem. Soc. 134(18), 7937–7943 (2012).
[Crossref] [PubMed]

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, “Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(19), 4724–4730 (2017).
[Crossref]

J. Phys. Chem. C (1)

X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, and G. Li, “Origin of the Enhanced Photocatalytic Activities of Semiconductors: A Case Study of ZnO Doped with Mg2+,” J. Phys. Chem. C 112(32), 12242–12248 (2008).
[Crossref]

Nano Lett. (2)

J. Schornbaum, Y. Zakharko, M. Held, S. Thiemann, F. Gannott, and J. Zaumseil, “Light-emitting quantum dot transistors: emission at high charge carrier densities,” Nano Lett. 15(3), 1822–1828 (2015).
[Crossref] [PubMed]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[Crossref]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Nature (2)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(4), 354–357 (1994).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD spectra of ZnMgO and ZnO nanoparticles.
Fig. 2
Fig. 2 TEM images of (a) ZnO and (b) ZnMgO nanoparticles. The insets are the particle-size distributions of them.
Fig. 3
Fig. 3 Optical absorption and emission spectra of pure ZnMgO nanoparticles, ZnO nanoparticles and ZnMgO:ZnO mixtures.
Fig. 4
Fig. 4 The structure and performance of QLED devices. (a) Architecture schematics, (b) energy level alignment, (c) electroluminescence (EL) spectra, inset: the picture of QLED working at 6 V, (d) current density-driving voltage, (e) luminance-driving voltage, and (f) EQE-driving voltage curves of the QLED devices.
Fig. 5
Fig. 5 AFM images of (a) ZnMgO film, (b) ZnMgO:ZnO = 1:1 film, (c) ZnMgO:ZnO = 2:1 film, (d) ZnMgO:ZnO = 3:1 film and (e) ZnO film.
Fig. 6
Fig. 6 SEM images of (a) ZnMgO film, (b) ZnMgO:ZnO = 1:1 film, (c) ZnMgO:ZnO = 2:1 film, (d) ZnMgO:ZnO = 3:1 film and (e) ZnO film.
Fig. 7
Fig. 7 (a) The current density-voltage of the electron-only device. (b) Time-resolved PL decay of QDs with Glass/QDs, ITO/QDs/ZnMgO, ITO/QDs/ZnMgO:ZnO = 2:1 and ITO/QDs/ZnO structures.

Tables (1)

Tables Icon

Table 1 The PL decay lifetime of QDs and the rate ( κ E T ) and efficiency ( η E T ) of spontaneous charge transfer from QDs to ETL.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E Q E = n p h o t o n n e l e t r o n = n p h o t o n t I / q
κ E T = 1 τ Q D / E T L 1 τ Q D
η E T = 1 τ Q D / E T L τ Q D

Metrics