Abstract

With the continual increase of the carrier mobility of organic semiconductors, there is a great need for optimizing the contact between source/drain electrode and organics in order to further improve the performance of organic field-effect transistors. The effects of Au source/drain electrode contact length on the photosensitivity in pentacene-based organic field-effect transistors were systematically investigated. The results show that at a given gate voltage and drain voltage, the drain current increases with the contact length at first and then tends to saturate at a contact length of 0.7 mm. It is observed that the effective mobility under illumination, both in the linear region and the saturation region, as well as the photoresponsivity and the external quantum efficiency, increase with contact length. All of these can be attributed to the reduction of contact resistance with the increase of contact length. Moreover, analytical expressions were derived and successfully describe the measured dependence of the drain current on the contact length.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Channel-length-dependent performance of photosensitive organic field-effect transistors

Yingquan Peng, Fangzhi Guo, Hongquan Xia, Wenli Lv, Lei Sun, Sunan Xu, Huabiao Zhu, Xinda Chen, Chen Liu, Ying Wang, and Feiping Lu
Appl. Opt. 58(6) 1319-1326 (2019)

Quasi-surface emission in vertical organic light-emitting transistors with network electrode

Chang-Min Keum, In-Ho Lee, Sin-Hyung Lee, Gyu Jeong Lee, Min-Hoi Kim, and Sin-Doo Lee
Opt. Express 22(12) 14750-14756 (2014)

Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
    [Crossref]
  2. M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
    [Crossref] [PubMed]
  3. T. Minari and Ch. Liu, “Origin of large contact resistance in organic field-effect transistors,” IEEE, 1–3(2013)
  4. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
    [Crossref]
  5. K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett. 83(26), 5539–5541 (2003).
    [Crossref]
  6. B. Kshitij, S. Mayoorika, and S. Vipul, “Comparative analysis of contact resistance and photoresponse in poly (3-hexylthiophene) and poly (3-octylthiophene) based organic field-effect transistors,” Synth. Met. 233, 15–21 (2017).
    [Crossref]
  7. T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
    [Crossref]
  8. Ch. Liu, Y. Xu, and Y.-Y. Noh, “Contact engineering in organic field-effect transistors,” Mater. Today 18(2), 79–96 (2015).
    [Crossref]
  9. C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
    [Crossref]
  10. H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).
  11. J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
    [Crossref]
  12. R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
    [Crossref]
  13. S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
    [Crossref]
  14. T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
    [Crossref]
  15. F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
    [Crossref]
  16. B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
    [Crossref]
  17. B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).
  18. S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors,” J. Appl. Phys. 105(1), 014509 (2009).
    [Crossref]
  19. M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
    [Crossref] [PubMed]
  20. T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
    [Crossref]
  21. P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
    [Crossref]
  22. V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
    [Crossref]
  23. F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
    [Crossref] [PubMed]
  24. H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).
  25. M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quantum Phys. 36(6), 609–611 (2004).
  26. Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
    [Crossref]
  27. F. X. Werkmeister, S. J. Noever, and B. A. Nickel, “Sub-monolayer percolation of pentacene on rough parylene-C dielectrics,” Org. Electron. 26, 439–442 (2015).
    [Crossref]
  28. R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
    [Crossref] [PubMed]
  29. A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
    [Crossref]
  30. A. E. Amrani, B. Lucas, and B. Ratier, “The effect of the active layer thickness on the performance of pentacene-based phototransistors,” Synth. Met. 161(23-24), 2566–2569 (2012).
    [Crossref]

2017 (1)

B. Kshitij, S. Mayoorika, and S. Vipul, “Comparative analysis of contact resistance and photoresponse in poly (3-hexylthiophene) and poly (3-octylthiophene) based organic field-effect transistors,” Synth. Met. 233, 15–21 (2017).
[Crossref]

2016 (2)

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
[Crossref]

2015 (6)

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

Ch. Liu, Y. Xu, and Y.-Y. Noh, “Contact engineering in organic field-effect transistors,” Mater. Today 18(2), 79–96 (2015).
[Crossref]

F. X. Werkmeister, S. J. Noever, and B. A. Nickel, “Sub-monolayer percolation of pentacene on rough parylene-C dielectrics,” Org. Electron. 26, 439–442 (2015).
[Crossref]

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
[Crossref]

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

2014 (3)

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

2013 (1)

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

2012 (6)

A. E. Amrani, B. Lucas, and B. Ratier, “The effect of the active layer thickness on the performance of pentacene-based phototransistors,” Synth. Met. 161(23-24), 2566–2569 (2012).
[Crossref]

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

2009 (2)

S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors,” J. Appl. Phys. 105(1), 014509 (2009).
[Crossref]

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

2007 (2)

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

2006 (2)

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

2004 (1)

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

2003 (1)

K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett. 83(26), 5539–5541 (2003).
[Crossref]

1998 (1)

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Amrani, A. E.

A. E. Amrani, B. Lucas, and B. Ratier, “The effect of the active layer thickness on the performance of pentacene-based phototransistors,” Synth. Met. 161(23-24), 2566–2569 (2012).
[Crossref]

Ante, F.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Belaineh, D.

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

Bruno, A.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Burghartz, J. N.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Chan, Y.

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

Chen, D.

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

Chiang, C.

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Dao, T. T.

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

Facchetti, A.

R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
[Crossref]

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Fan, G.

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

Fian, A.

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Frisbie, C. D.

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett. 83(26), 5539–5541 (2003).
[Crossref]

Fukuzumi, S.

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

Gao, P.

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

Gong, G.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Grimaldi, I. A.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Gundlach, D. J.

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

Günther, A. A.

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
[Crossref]

Guo, J.

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Hao, Y.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

Hollerer, M.

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Hou, J.

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

Ikeda, M.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Jackson, T. N.

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Ji, Z.

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Kälblein, D.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Kanicki, J.

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Kasemann, D.

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
[Crossref]

Kern, K.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Klauk, H.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Knipp, D.

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

Kshitij, B.

B. Kshitij, S. Mayoorika, and S. Vipul, “Comparative analysis of contact resistance and photoresponse in poly (3-hexylthiophene) and poly (3-octylthiophene) based organic field-effect transistors,” Synth. Met. 233, 15–21 (2017).
[Crossref]

Lai, H.

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

Lassnig, R.

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Leo, K.

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
[Crossref]

Li, L.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Li, P.

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

Li, W.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Li, Y.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Liguori, R.

R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
[Crossref]

Liu, Ch.

Ch. Liu, Y. Xu, and Y.-Y. Noh, “Contact engineering in organic field-effect transistors,” Mater. Today 18(2), 79–96 (2015).
[Crossref]

T. Minari and Ch. Liu, “Origin of large contact resistance in organic field-effect transistors,” IEEE, 1–3(2013)

Liu, M.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Liu, X.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Loffredo, F.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Lu, C.

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Lucas, B.

A. E. Amrani, B. Lucas, and B. Ratier, “The effect of the active layer thickness on the performance of pentacene-based phototransistors,” Synth. Met. 161(23-24), 2566–2569 (2012).
[Crossref]

Luo, X.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Lüssemb, B.

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

Lv, W.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

Ma, X.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

Marinkovic, M.

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

Martin, S.

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Matsushima, T.

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

Mauro, A. D. G. D.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Mayoorika, S.

B. Kshitij, S. Mayoorika, and S. Vipul, “Comparative analysis of contact resistance and photoresponse in poly (3-hexylthiophene) and poly (3-octylthiophene) based organic field-effect transistors,” Synth. Met. 233, 15–21 (2017).
[Crossref]

McKeen, J. C.

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

Minari, T.

T. Minari and Ch. Liu, “Origin of large contact resistance in organic field-effect transistors,” IEEE, 1–3(2013)

Minarini, C.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Miscioscia, R.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Murakami, M.

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

Murata, H.

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

Necliudov, P. V.

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

Nenna, G.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Nichols, J. A.

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Nickel, B. A.

F. X. Werkmeister, S. J. Noever, and B. A. Nickel, “Sub-monolayer percolation of pentacene on rough parylene-C dielectrics,” Org. Electron. 26, 439–442 (2015).
[Crossref]

Nicolosi, D.

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

Noever, S. J.

F. X. Werkmeister, S. J. Noever, and B. A. Nickel, “Sub-monolayer percolation of pentacene on rough parylene-C dielectrics,” Org. Electron. 26, 439–442 (2015).
[Crossref]

Noh, Y.-Y.

Ch. Liu, Y. Xu, and Y.-Y. Noh, “Contact engineering in organic field-effect transistors,” Mater. Today 18(2), 79–96 (2015).
[Crossref]

Occhipinti, L.

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

Ohkubo, K.

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

Paasch, G.

S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors,” J. Appl. Phys. 105(1), 014509 (2009).
[Crossref]

Pandolfi, G.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Pei, Z.

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

Peng, Y.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

Pesavento, P. V.

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett. 83(26), 5539–5541 (2003).
[Crossref]

Petrosino, M.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Puntambekar, K. P.

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett. 83(26), 5539–5541 (2003).
[Crossref]

Radlik, W.

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Ratier, B.

A. E. Amrani, B. Lucas, and B. Ratier, “The effect of the active layer thickness on the performance of pentacene-based phototransistors,” Synth. Met. 161(23-24), 2566–2569 (2012).
[Crossref]

Richards, T. J.

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

Rosa, M. L.

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

Rubino, A.

R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
[Crossref]

Ruden, P. P.

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

Scheinert, S.

S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors,” J. Appl. Phys. 105(1), 014509 (2009).
[Crossref]

Schmid, G.

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Sekitani, T.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Sheets, W. C.

R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
[Crossref]

Sheraw, C. D.

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Shur, M. S.

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

Sicurella, G.

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

Sirringhaus, H.

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

Someya, T.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Stadlober, B.

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Striedinger, B.

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Sun, P.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

Takeuchi, S.

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Takimiya, K.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Ugai, Y.

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Villani, F.

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Vinciguerra, V.

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

Vipul, S.

B. Kshitij, S. Mayoorika, and S. Vipul, “Comparative analysis of contact resistance and photoresponse in poly (3-hexylthiophene) and poly (3-octylthiophene) based organic field-effect transistors,” Synth. Met. 233, 15–21 (2017).
[Crossref]

Wagner, V.

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

Wang, H.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Wang, L.

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

Wang, W.

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

Wang, Y.

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

Weber, W.

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Wen, Z.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Werkmeister, F. X.

F. X. Werkmeister, S. J. Noever, and B. A. Nickel, “Sub-monolayer percolation of pentacene on rough parylene-C dielectrics,” Org. Electron. 26, 439–442 (2015).
[Crossref]

Widmer, J.

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
[Crossref]

Winkler, A.

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Xu, Y.

Ch. Liu, Y. Xu, and Y.-Y. Noh, “Contact engineering in organic field-effect transistors,” Mater. Today 18(2), 79–96 (2015).
[Crossref]

Yao, B.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

Yuan, S.

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

Yukawa, T.

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Zaki, T.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Zhou, L.

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

Zhou, M.

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

Zschieschang, U.

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, “On the origin of contact resistances of organic thin film transistors,” Adv. Mater. 24(29), 4005–4009 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

J. Hou, D. Kasemann, J. Widmer, A. A. Günther, B. Lüssemb, and K. Leo, “Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping,” Appl. Phys. Lett. 108(10), 103303 (2016).
[Crossref]

H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Appl. Phys. Lett. 84(2), 296–298 (2004).
[Crossref]

K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett. 83(26), 5539–5541 (2003).
[Crossref]

B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes,” Appl. Phys. Lett. 101(16), 023305 (2012).

A. A. Günther, J. Widmer, D. Kasemann, and K. Leo, “Hole mobility in thermally evaporated pentacene: Morphological and directional dependence,” Appl. Phys. Lett. 106(23), 233301 (2015).
[Crossref]

IEEE (1)

H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, “Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors,” IEEE 34(1), 69–71 (2012).

IEEE. (1)

H. Wang, W. Wang, P. Sun, X. Ma, L. Li, M. Liu, and Y. Hao, “Contact length scaling in staggered organic thin-film transistors,” IEEE. 36(6), 609–611 (2015).

J. Appl. Phys. (5)

S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors,” J. Appl. Phys. 105(1), 014509 (2009).
[Crossref]

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” J. Appl. Phys. 100(2), 024509 (2006).
[Crossref]

T. J. Richards and H. Sirringhaus, “Analysis of the contact resistance in staggered, top-gate organic field-effect transistors,” J. Appl. Phys. 102(9), 094510 (2007).
[Crossref]

P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, and P. P. Ruden, “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility,” J. Appl. Phys. 99(9), 094504 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. T. Dao, T. Matsushima, M. Murakami, K. Ohkubo, S. Fukuzumi, and H. Murata, “Enhancement of ultraviolet light responsivity of a pentacene phototransistor by introducing photoactive molecules into a gate dielectric,” Jpn. J. Appl. Phys. 53(2S), 02BB03 (2014).
[Crossref]

C. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, “Top-gate staggered amorphous silicon thin-film transistor:series resistance and nitride thickness effects,” Jpn. J. Appl. Phys. 37(11), 5914–5920 (1998).
[Crossref]

Mater. Today (1)

Ch. Liu, Y. Xu, and Y.-Y. Noh, “Contact engineering in organic field-effect transistors,” Mater. Today 18(2), 79–96 (2015).
[Crossref]

Org. Electron. (6)

R. Liguori, W. C. Sheets, A. Facchetti, and A. Rubino, “Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric,” Org. Electron. 28, 147–154 (2016).
[Crossref]

S. Yuan, Z. Pei, H. Lai, P. Li, and Y. Chan, “Pentacene phototransistor with gate voltage independent responsivit and sensitivity by small silver nanoparticles decoration,” Org. Electron. 27(31), 7–11 (2015).
[Crossref]

V. Vinciguerra, M. L. Rosa, D. Nicolosi, G. Sicurella, and L. Occhipinti, “Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors,” Org. Electron. 10(6), 1074–1081 (2009).
[Crossref]

Y. Peng, W. Lv, B. Yao, G. Fan, D. Chen, P. Gao, M. Zhou, and Y. Wang, “High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction,” Org. Electron. 14(4), 1045–1051 (2013).
[Crossref]

F. X. Werkmeister, S. J. Noever, and B. A. Nickel, “Sub-monolayer percolation of pentacene on rough parylene-C dielectrics,” Org. Electron. 26, 439–442 (2015).
[Crossref]

R. Lassnig, M. Hollerer, B. Striedinger, A. Fian, B. Stadlober, and A. Winkler, “Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification,” Org. Electron. 26, 420–428 (2015).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

F. Loffredo, A. Bruno, A. D. G. D. Mauro, I. A. Grimaldi, R. Miscioscia, G. Nenna, G. Pandolfi, M. Petrosino, F. Villani, C. Minarini, and A. Facchetti, “Photoresponse of pentacene-based transistors,” Phys. Status Solidi., A Appl. Mater. Sci. 211(2), 460–466 (2014).
[Crossref]

Small (1)

F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, “Contact resistance and megahertz operation of aggressively scaled organic transistors,” Small 8(1), 73–79 (2012).
[Crossref] [PubMed]

Synth. Met. (3)

B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G. Gong, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surfaceroughness of the active layer in organic phototransistors,” Synth. Met. 193(193), 35–40 (2014).
[Crossref]

B. Kshitij, S. Mayoorika, and S. Vipul, “Comparative analysis of contact resistance and photoresponse in poly (3-hexylthiophene) and poly (3-octylthiophene) based organic field-effect transistors,” Synth. Met. 233, 15–21 (2017).
[Crossref]

A. E. Amrani, B. Lucas, and B. Ratier, “The effect of the active layer thickness on the performance of pentacene-based phototransistors,” Synth. Met. 161(23-24), 2566–2569 (2012).
[Crossref]

Other (2)

M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quantum Phys. 36(6), 609–611 (2004).

T. Minari and Ch. Liu, “Origin of large contact resistance in organic field-effect transistors,” IEEE, 1–3(2013)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic cross section of a pentacene thin film transistor in the top contact configuration and an illustration of the current density distribution in pentacene films.
Fig. 2
Fig. 2 (a) Schematically diagram of the bottom-gate top contact structure of OFET. (b) Five different devices variation of contact length on a substrate.
Fig. 3
Fig. 3 The circuit schematically diagram of the operation device.
Fig. 4
Fig. 4 Output current-voltage characterization curves of OFETs with different source/drain contact lengths ranging from 0.3 mm to 0.9 mm at a gate voltage of Vg = −80 V. (a) In the dark; (b) Under illumination of 655 nm wavelength and 0.04 mW/cm2 light intensity.
Fig. 5
Fig. 5 The comparison between measured (symbols) and simulated (solid line) drain currents by Eq. (8) in the dark (a) and under illumination (b) in dependence of contact length in the linear region, at Vg = −90 V, and Vd = −2.9 V.
Fig. 6
Fig. 6 The dependence of the linear region and saturation region effective field-effect mobility on the contact length in the dark (filled symbols) and under illumination (open symbols). (a) The linear region effective filed-effect mobility, μeff,lin, extracted from Eq. (10); (b) The saturation region effective filed-effect mobility, μeff,sat, extracted from Eq. (11).
Fig. 7
Fig. 7 The contact length dependent photoresponsive properties of the pentacene OFET.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V d = I d ( R ch +2 R c )
R ch = r ch L
r ch = 1 μ ch C i W( V g V t ) .
R c = r ch L T coth( d L T )
L T = ( r c W r ch ) 1/2
I d = Wμ C i L ( V g V t )( V d 2 R c I d )
I d = ( V g V t ) V d L W μ ch C i +2 R c ( V g V t )
I d = V d W L T r c [ L L T +2coth( d L T ) ] -1
L T = [ μ ch C i r c ( V g V t ) ] 1/2
μ eff,lin = L W C i V d I d V g
μ eff,sat = 2L W C i ( I d V g ) 2
EQE= hc qλ I ph P pow = hc qλ R

Metrics