Abstract

Three kinds of reusable surface enhanced Raman scattering (SERS) substrates based on Ag-TiO2-G, Ag-G-TiO2 and G-Ag-TiO2 hybrid structures were prepared by a combination method of simple sol-gel self-assembly and annealing. The composites were confirmed by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Raman mapping spectra of the three hybrids were analyzed in order to study the difference of charge transfer between Ag, TiO2 and graphene. In addition, rhodamine 6G (R6G) was used as the probe analyte, and the SERS activity of the three structures decreased orderly in the sequence of Ag-G-TiO2, G-Ag-TiO2, and Ag-TiO2-G, with the enhancement factor of about 106, which was due to the high electromagnetic enhancement of the Ag nanoparticles (AgNPs). The photo-catalytic properties of the three kinds of composites were experimentally studied via Raman mapping measurements through UV irradiation. The photocatalytic ability decreased also orderly in the sequence of Ag-G-TiO2, G-Ag-TiO2, and Ag-TiO2-G, and the reason was discussed in details.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates

Jie Zhang, Xiaolei Zhang, Yimin Ding, and Yong Zhu
Appl. Opt. 55(32) 9105-9112 (2016)

Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate

Xiaofei Zhao, Jing Yu, Zijing Zhang, Chonghui Li, Zhen Li, Shouzhen Jiang, Jie Pan, Aihua Liu, Chao Zhang, and Baoyuan Man
Opt. Express 26(18) 23831-23843 (2018)

3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [Crossref]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
  4. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
    [Crossref] [PubMed]
  5. X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
    [Crossref] [PubMed]
  6. M. Fan, G. F. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693(1-2), 7–25 (2011).
    [Crossref] [PubMed]
  7. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
    [Crossref] [PubMed]
  8. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6–7), 497–509 (2005).
    [Crossref]
  9. Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
    [Crossref]
  10. D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
    [Crossref] [PubMed]
  11. J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
    [Crossref] [PubMed]
  12. X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
    [Crossref]
  13. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
    [Crossref]
  14. Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Advances 4(79), 41734–41743 (2014).
    [Crossref]
  15. K. C. Hsu and D. H. Chen, “Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide,” ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015).
    [Crossref] [PubMed]
  16. Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
    [Crossref]
  17. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
    [Crossref] [PubMed]
  18. L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
    [Crossref] [PubMed]
  19. F. X. Liang, D. Y. Zhang, J. Z. Wang, W. Y. Kong, Z. X. Zhang, Y. Wang, and L. B. Luo, “Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction,” Opt. Express 24(23), 25922–25932 (2016).
    [Crossref] [PubMed]
  20. J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
    [Crossref] [PubMed]
  21. Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
    [Crossref] [PubMed]
  22. H. J. Huang, S. Y. Zhen, P. Y. Li, S. D. Tzeng, and H. P. Chiang, “Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction,” Opt. Express 24(14), 15603–15608 (2016).
    [Crossref] [PubMed]
  23. X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photo-catalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
    [Crossref] [PubMed]
  24. T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
    [Crossref]
  25. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [Crossref]
  26. X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
    [Crossref] [PubMed]
  27. A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
    [Crossref]
  28. A. Sclafani and J. M. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photoch. Photobio. A 113(2), 181–188 (1998).
    [Crossref]
  29. A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
    [Crossref] [PubMed]
  30. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
    [Crossref] [PubMed]
  31. T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
    [Crossref]
  32. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
    [Crossref] [PubMed]
  33. J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
    [Crossref] [PubMed]
  34. J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
    [Crossref] [PubMed]
  35. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  36. J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
    [Crossref] [PubMed]
  37. J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
    [Crossref]
  38. N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
    [Crossref] [PubMed]
  39. S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
    [Crossref] [PubMed]

2017 (1)

2016 (5)

F. X. Liang, D. Y. Zhang, J. Z. Wang, W. Y. Kong, Z. X. Zhang, Y. Wang, and L. B. Luo, “Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction,” Opt. Express 24(23), 25922–25932 (2016).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

H. J. Huang, S. Y. Zhen, P. Y. Li, S. D. Tzeng, and H. P. Chiang, “Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction,” Opt. Express 24(14), 15603–15608 (2016).
[Crossref] [PubMed]

2015 (3)

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

K. C. Hsu and D. H. Chen, “Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide,” ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015).
[Crossref] [PubMed]

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Advances 4(79), 41734–41743 (2014).
[Crossref]

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

2013 (2)

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

2012 (4)

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

2011 (2)

M. Fan, G. F. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693(1-2), 7–25 (2011).
[Crossref] [PubMed]

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

2010 (2)

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

2009 (3)

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[Crossref] [PubMed]

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

2008 (2)

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

2007 (2)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

2006 (1)

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

2005 (2)

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6–7), 497–509 (2005).
[Crossref]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

1998 (1)

A. Sclafani and J. M. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photoch. Photobio. A 113(2), 181–188 (1998).
[Crossref]

1997 (1)

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

1977 (2)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Abate, A.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Ait-Ichou, Y.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).

Alexander-Webber, J. A.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Andrade, G. F.

M. Fan, G. F. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693(1-2), 7–25 (2011).
[Crossref] [PubMed]

Arpiainen, S.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Awazu, K.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Ball, J. M.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Barea, E. M.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Bhaviripudi, S.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Bisquert, J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Brolo, A. G.

M. Fan, G. F. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693(1-2), 7–25 (2011).
[Crossref] [PubMed]

Byrne, J. A.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Cai, G.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Chen, D. H.

K. C. Hsu and D. H. Chen, “Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide,” ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015).
[Crossref] [PubMed]

Chen, S. M.

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

Chen, Y.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

Chen, Y. S.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Chen, Z.

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Cheng, H.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Cheon, S.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Chiang, H. P.

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).

Dai, Z.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Ding, H.

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Dluhy, R.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

Dresselhaus, M. S.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Driskell, J.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

Du, L.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

Dunlop, P. S. M.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Falaras, P.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Fan, M.

M. Fan, G. F. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693(1-2), 7–25 (2011).
[Crossref] [PubMed]

Fan, T.

Fernández, A.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Fujimaki, M.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Furube, A.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

Gong, T. C.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

González-Elipe, A. R.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Gu, L.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Hamilton, J. W. J.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Han, X.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Han, X. X.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[Crossref] [PubMed]

Hara, K.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Herrmann, J. M.

A. Sclafani and J. M. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photoch. Photobio. A 113(2), 181–188 (1998).
[Crossref]

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Hsu, K. C.

K. C. Hsu and D. H. Chen, “Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide,” ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015).
[Crossref] [PubMed]

Huang, H. J.

Huang, J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Huang, Q. W.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Jia, X. T.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Jiang, C.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Jiang, L.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

Jones, L.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

Katoh, R.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

Kihm, K. D.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Kim, H.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kong, J.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Kong, W. Y.

Kontos, A. G.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Lai, C.

Lassaletta, G.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, J. S.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Li, J.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Li, P. Y.

Li, Y.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Li, Y. Y.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Liang, F. X.

Lim, G.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Lim, T. T.

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Lipsanen, H.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Liu, L.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Liu, Z. F.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Luo, L. B.

Lv, X.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Mei, F.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Meng, Y.

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Advances 4(79), 41734–41743 (2014).
[Crossref]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Mora-Sero, I.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Murakami, H.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Naumenko, D.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Nicholas, R. J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Nolan, N. T.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Ohki, Y.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Otto, A.

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6–7), 497–509 (2005).
[Crossref]

Ozaki, Y.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[Crossref] [PubMed]

Pan, G. L.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Park, J. S.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Pelaez, M.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Pillai, S. C.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Quan, J.

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Quan, J. M.

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Reina, A.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Ren, F.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Ren, W. J.

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Rockstuhl, C.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Saliba, M.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Schaefer, J. A.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Sclafani, A.

A. Sclafani and J. M. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photoch. Photobio. A 113(2), 181–188 (1998).
[Crossref]

Seery, M. K.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Shan, Y.

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Shanmukh, S.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

Shea, K. O.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

Snaith, H. J.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Snitka, V.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Snopok, B.

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Song, W. L.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Tachiya, M.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

Tahiri, H.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Tang, Y.

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Thiele, S.

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Tian, S. Q.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Tominaga, J.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Tripp, R. A.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

Tzeng, S. D.

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Wang, D.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

Wang, J.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

Wang, J. T.

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Wang, J. Z.

Wang, N.

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Wang, X.

X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photo-catalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
[Crossref] [PubMed]

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

Wang, X. X.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Wang, X. Y.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

Wang, Y.

Watanabe, T.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Wei, J.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Wen, Y.

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Wu, W.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Xiao, W.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Xiao, X.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Xie, C. S.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Xie, Y.

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Advances 4(79), 41734–41743 (2014).
[Crossref]

Xu, J.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Yang, L. Y.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Yang, N.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

Yin, S. G.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Yoshida, N.

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

Zeng, D. W.

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

Zhai, J.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

Zhang, D. Y.

Zhang, H.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

Zhang, J.

X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photo-catalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

Zhang, N.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Zhang, S.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Zhang, X.

Zhang, X. L.

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

Zhang, X. Y.

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Zhang, Z. X.

Zhao, B.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[Crossref] [PubMed]

Zhao, Y.

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

Zhen, S. Y.

Zhou, H.

Zhou, J.

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Zhu, Y.

X. Wang, J. Zhang, X. Zhang, and Y. Zhu, “Characterization, uniformity and photo-catalytic properties of graphene/TiO2 nanocomposites via Raman mapping,” Opt. Express 25(18), 21496–21508 (2017).
[Crossref] [PubMed]

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, T. Fan, X. Zhang, C. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

K. C. Hsu and D. H. Chen, “Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide,” ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015).
[Crossref] [PubMed]

L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, “One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties,” ACS Appl. Mater. Interfaces 5(8), 3085–3093 (2013).
[Crossref] [PubMed]

ACS Catal. (1)

Q. W. Huang, S. Q. Tian, D. W. Zeng, X. X. Wang, W. L. Song, Y. Y. Li, W. Xiao, and C. S. Xie, “Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond,” ACS Catal. 3(7), 1477–1485 (2013).
[Crossref]

ACS Nano (2)

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref] [PubMed]

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells,” ACS Nano 4(2), 887–894 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater. 19(6), 894–904 (2009).
[Crossref]

Anal. Bioanal. Chem. (1)

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. Fan, G. F. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693(1-2), 7–25 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (1)

X. Zhang, J. Zhang, J. Quan, N. Wang, and Y. Zhu, “Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles,” Analyst (Lond.) 141(19), 5527–5534 (2016).
[Crossref] [PubMed]

Appl. Catal. B (2)

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O. Shea, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125(33), 331–349 (2012).
[Crossref]

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3), 219–228 (1997).
[Crossref]

Appl. Opt. (1)

Carbon (2)

T. C. Gong, J. Zhang, Y. Zhu, X. Y. Wang, X. L. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. C. Gong, Y. Zhu, J. Zhang, W. J. Ren, J. M. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Soc. Rev. (1)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (4)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).

K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. Am. Chem. Soc. 130(5), 1676–1680 (2008).
[Crossref] [PubMed]

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(48), 14852–14853 (2007).
[Crossref] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

J. Mater. Chem. (1)

X. Wang, Y. Tang, Z. Chen, and T. T. Lim, “Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria,” J. Mater. Chem. 22(43), 23149–23158 (2012).
[Crossref]

J. Photoch. Photobio. A (1)

A. Sclafani and J. M. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” J. Photoch. Photobio. A 113(2), 181–188 (1998).
[Crossref]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Raman Spectrosc. (1)

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6–7), 497–509 (2005).
[Crossref]

Nano Lett. (2)

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6(11), 2630–2636 (2006).
[Crossref] [PubMed]

J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14(2), 724–730 (2014).
[Crossref] [PubMed]

Nano Res. (1)

A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, “Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces,” Nano Res. 2(6), 509–516 (2009).
[Crossref]

Nanoscale (1)

Y. Wen, H. Ding, and Y. Shan, “Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite,” Nanoscale 3(10), 4411–4417 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, and C. Jiang, “Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island,” Nanoscale Res. Lett. 7(1), 239 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, and H. Lipsanen, “Graphene-enhanced Raman imaging of TiO2 nanoparticles,” Nanotechnology 23(46), 465703 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Plasmonics (1)

J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics 11(3), 743–751 (2016).
[Crossref] [PubMed]

RSC Advances (1)

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Advances 4(79), 41734–41743 (2014).
[Crossref]

Sci. Rep. (1)

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Preparation of Ag-TiO2-G, Ag-G-TiO2 and G-Ag-TiO2 substrates.
Fig. 2
Fig. 2 Experimental steps of photo-catalytic performance of R6G solution on three kinds of Ag/TiO2/G composite substrates.
Fig. 3
Fig. 3 (a1) TEM image of AgNPs, the inset is an enlarged image; (a2) the corresponding SAED patterns; (b1) TEM image of TiO2 nanoparticles, the inset is an enlarged image; (b2) the corresponding SAED patterns; (c1) the Raman spectrum of graphene, the inset is the picture of graphene sample on a Cu foil; (c2) the absorption of graphene, the inset is the optical microscope image of graphene on the SiO2 substrate.
Fig. 4
Fig. 4 Energy dispersive spectrum analysis results of samples (a) G-Ag-TiO2, (b) Ag-G-TiO2, (c) Ag-TiO2-G, and the distribution diagram of element for Ag, C and Ti is given out accordingly.
Fig. 5
Fig. 5 The averaged Raman spectra of (a) three different samples at range of 100 to 3000 cm−1, and (b) six different samples at range of 1200 to 2800 cm−1.
Fig. 6
Fig. 6 Raman spectra of six substrates (spectral range from 100 to 800 cm−1)
Fig. 7
Fig. 7 Raman mapping of R6G solution with a concentration of 1 × 10−6 mol/L on (a) Ag-G-TiO2, (b) G-Ag-TiO2 and (c) Ag-TiO2-G substrates, (d) the corresponding averaged Raman spectra.
Fig. 8
Fig. 8 The averaged Raman spectra of R6G on samples (a) Ag-G-TiO2, (b) G-Ag-TiO2 and (c) Ag-TiO2-G, at the beginning time and after different UV light illumination time; (d) the relationship between the normalized intensity at 1650 cm−1 and the illumination time, the fitting curves were also given out.
Fig. 9
Fig. 9 Energy level structure of samples (a) G-Ag-TiO2, (b) Ag-TiO2-G and (c) Ag-G-TiO2.
Fig. 10
Fig. 10 Simulation models of (a) Ag-G-TiO2, (b) G-Ag-TiO2 and (c) Ag-TiO2-G composite structures, the corresponding electric field distributions of (d) Ag-G-TiO2, (e) G-Ag-TiO2 and (f) Ag-TiO2-G.

Tables (3)

Tables Icon

Table 1 Details of the position and the intensity of Raman characteristic peaks for graphene and TiO2 (140 cm−1) on different substrates

Tables Icon

Table 2 Raman characteristic peak intensity and position analysis results for R6G molecules on SERS substrates with different structures

Tables Icon

Table 3 Raman characteristic peak intensity at 1650 cm−1 on the three samples under different illumination time

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

GAg TiO 2 +hvGAg TiO 2 ( e h + )
GAg TiO 2 ( e h + )GAg( 2e ) TiO 2 ( e h + )
GAg( 2e ) TiO 2 ( e h + )GAg( e ) TiO 2 ( e )( e h + )
GAg( e ) TiO 2 ( e )( e h + )G( e )Ag TiO 2 ( e )( e h + )
e + O 2 O 2 · ( O 2 · + H 2 O HO 2 ·+ H 2 O 2 +·OH )
h + + H 2 O H + +·OH
ROS+M M + ·
h + +M M + ·
M + ·oxidation products

Metrics