Abstract

High-refractive-index-contrast potassium double tungstate waveguides have been experimentally demonstrated. A bulk KY(WO4)2 layer was successfully bonded onto a lower refractive index carrier using a UV curable optical adhesive and polished down to the thickness of 2.4 µm. A set of rib waveguides with ~2 μm width and 0.85 μm slab thickness were fabricated on the thin transferred KY(WO4)2 layer by focused-ion-beam milling. The upper-limit of the propagation losses of the fabricated waveguides is estimated to be 1.5 dB/cm at the wavelength of 1.55 μm using the Fabry-Perot method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy

Western Bolaños, Joan J. Carvajal, Xavier Mateos, Ganapathy Senthil Murugan, Ananth Z. Subramanian, James S. Wilkinson, Eugenio Cantelar, Daniel Jaque, Ginés Lifante, Magdalena Aguiló, and Francisco Díaz
Opt. Express 18(26) 26937-26945 (2010)

High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers

Sergio A. Vázquez-Córdova, Shanmugam Aravazhi, Christos Grivas, Yean-Sheng Yong, Sonia M. García-Blanco, Jennifer L. Herek, and Markus Pollnau
Opt. Express 26(5) 6260-6266 (2018)

Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer

Yean-Sheng Yong, Shanmugam Aravazhi, Sergio A. Vázquez-Córdova, Jennifer L. Herek, Sonia M. García-Blanco, and Markus Pollnau
J. Opt. Soc. Am. B 35(9) 2176-2185 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
    [Crossref] [PubMed]
  2. I. Vasilief, S. Guy, B. Jacquier, B. Boulard, Y. P. Gao, C. Duverger, H. Haquin, V. Nazabal, J.-L. Adam, M. Couchaud, L. Fulbert, C. Cassagnettes, F. Rooms, and D. Barbier, “Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique,” Appl. Opt. 44(22), 4678–4683 (2005).
    [Crossref] [PubMed]
  3. A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
    [Crossref]
  4. E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
    [Crossref]
  5. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
    [Crossref]
  6. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
    [Crossref]
  7. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref] [PubMed]
  8. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref] [PubMed]
  9. S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
    [Crossref]
  10. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  11. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42(4), 803–806 (2017).
    [Crossref] [PubMed]
  12. S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38(6), 965–967 (2013).
    [Crossref] [PubMed]
  13. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
    [Crossref]
  14. S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
    [Crossref]
  15. F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
    [Crossref]
  16. M. A. Sefunc, F. Segerink, and S. Garcia-Blanco, “High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip,” Proc. SPIE 9365, 93650P (2015).
    [Crossref]
  17. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
    [Crossref]
  18. U. Gosele and Q.-Y. Tong, “Semiconductor Wafer Bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
    [Crossref]
  19. T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).
  20. C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).
  21. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
    [Crossref] [PubMed]
  22. F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
    [Crossref]
  23. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22(23), 3892 (1983).
    [Crossref] [PubMed]
  24. M. D. Himel and U. J. Gibson, “Measurement of planar waveguide losses using a coherent fiber bundle,” Appl. Opt. 25(23), 4413–4416 (1986).
    [Crossref] [PubMed]
  25. H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin-film optical waveguides,” Appl. Opt. 12(4), 755–757 (1973).
    [Crossref] [PubMed]
  26. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2(6), 683–700 (1993).
    [Crossref]
  27. A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
    [Crossref]
  28. I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33(1), 62–64 (1978).
    [Crossref]
  29. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47(35), 6625–6630 (2008).
    [Crossref] [PubMed]
  30. D. F. Clark and M. S. Iqbal, “Simple extension to the Fabry-Perot technique for accurate measurement of losses in semiconductor waveguides,” Opt. Lett. 15(22), 1291–1293 (1990).
    [Crossref] [PubMed]
  31. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
    [Crossref] [PubMed]
  32. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
    [Crossref]
  33. A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
    [Crossref]

2017 (1)

2015 (1)

M. A. Sefunc, F. Segerink, and S. Garcia-Blanco, “High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip,” Proc. SPIE 9365, 93650P (2015).
[Crossref]

2014 (2)

2013 (3)

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38(6), 965–967 (2013).
[Crossref] [PubMed]

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
[Crossref]

2012 (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

2011 (3)

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

2010 (3)

2008 (1)

2007 (1)

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

2006 (1)

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

2005 (2)

2004 (1)

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

1998 (2)

1997 (2)

T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

1995 (1)

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

1994 (1)

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

1993 (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2(6), 683–700 (1993).
[Crossref]

1992 (1)

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
[Crossref]

1990 (1)

1986 (1)

1983 (1)

1978 (1)

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33(1), 62–64 (1978).
[Crossref]

1973 (1)

Adam, J.-L.

Agirregabiria, M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Aguiló, M.

Apostolopoulos, V.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Aramburu, I.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Aravazhi, S.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

Arroyo, M. T.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Ay, F.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

Babu, S. S.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

Baets, R.

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38(6), 965–967 (2013).
[Crossref] [PubMed]

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

Barbier, D.

Berganzo, J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Bernhardi, E. H.

Blanco, F. J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Bolaños, W.

Borca, C. N.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Boulard, B.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

Brouckaert, J.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

Cantelar, E.

Carvajal, J. J.

Cassagnettes, C.

Cha, G.

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

Chang, L.

Chen, K.-N.

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

Choudhary, A.

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
[Crossref]

Chung, T. R.

T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).

Clark, D. F.

Couchaud, M.

Diaz, F.

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
[Crossref]

Díaz, F.

Diemeer, M. B. J.

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

Dijkstra, M.

Dunina, E. B.

Dunn, F. A.

Duverger, C.

Fagundes-Peters, D.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fulbert, L.

Gafiteanu, R.

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

Gao, Y. P.

Garcia, J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Garcia-Blanco, S.

M. A. Sefunc, F. Segerink, and S. Garcia-Blanco, “High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip,” Proc. SPIE 9365, 93650P (2015).
[Crossref]

García-Blanco, S. M.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Gardillou, F.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Geskus, D.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

Ghosh, S.

Gibson, U. J.

Giesen, A.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Gosele, U.

U. Gosele and Q.-Y. Tong, “Semiconductor Wafer Bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

Griebner, U.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

Grivas, C.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

Guy, S.

Haquin, H.

Hartung, S.

Hendriksen, B.

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

Herek, J. L.

Himel, M. D.

Hosoda, N.

T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).

Huber, G.

Iñurrategui, I.

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

Iqbal, M. S.

Jacquier, B.

Jaque, D.

Johannsen, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Kaminow, I. P.

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33(1), 62–64 (1978).
[Crossref]

Kannan, P.

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
[Crossref]

Karthe, W.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2(6), 683–700 (1993).
[Crossref]

Keyvaninia, S.

Khorasaninejad, M.

Kippenberg, T. J.

Ko, C.-T.

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Kornienko, A. A.

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, “Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2,” J. Opt. Soc. Am. B 15(3), 1205–1212 (1998).
[Crossref]

Kurokawa, T.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

Kutovoi, S.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Lagatsky, A. A.

Leibolt, W. N.

Li, Y.

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Lifante, G.

Limberger, H. G.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Manganelli, C. L.

Mateos, X.

Matsuo, S.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

Mayora, K.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Mikhailov, V. P.

Mizumoto, T.

Mond, M.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Murugan, G. S.

Nakahara, T.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

Namavar, F.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
[Crossref]

Nazabal, V.

Nötzel, R.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

Okamura, Y.

Otton, C. J.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

Pavlyuk, A. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Petermann, K.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Peters, J. D.

Peters, V.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Pfeiffer, M. H. P.

Podlipensky, A. V.

Pollnau, M.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Polman, A.

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

Pradeesh, K.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

Priolo, F.

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Reddy, A. A.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

Reed, G. T.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
[Crossref]

Richter, B.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2(6), 683–700 (1993).
[Crossref]

Rickman, A.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
[Crossref]

Roelkens, G.

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38(6), 965–967 (2013).
[Crossref] [PubMed]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

Romero, J. J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Rooms, F.

Ruano, J. M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Saini, S. S.

Salathé, R. P.

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Sefunc, M. A.

M. A. Sefunc, F. Segerink, and S. Garcia-Blanco, “High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip,” Proc. SPIE 9365, 93650P (2015).
[Crossref]

Segerink, F.

M. A. Sefunc, F. Segerink, and S. Garcia-Blanco, “High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip,” Proc. SPIE 9365, 93650P (2015).
[Crossref]

Shepherd, D. P.

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
[Crossref]

Smit, M.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

Snoeks, E.

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

Speiser, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

Stanton, E. J.

Stulz, L. W.

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33(1), 62–64 (1978).
[Crossref]

Subramanian, A. Z.

Suga, T.

T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).

Taebi, S.

Tateno, K.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

Tijero, M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

Tittelbach, G.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2(6), 683–700 (1993).
[Crossref]

Tong, Q.-Y.

U. Gosele and Q.-Y. Tong, “Semiconductor Wafer Bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Tsuda, H.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

van Dalfsen, K.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

Van Den Hoven, G. N.

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

Van Roy, W.

Van Thourhout, D.

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

Vasilief, I.

Vázquez-Córdova, S. A.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

Vijaya Prakash, G.

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

Volet, N.

Weber, H. P.

Weiss, B. L.

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
[Crossref]

Wilkinson, J. S.

Wörhoff, K.

Yamamoto, S.

Yang, L.

T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).

Yoshinaka, S.

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Zervas, M.

Adv. Mater. (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

U. Gosele and Q.-Y. Tong, “Semiconductor Wafer Bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd,Lu,Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B 111(3), 433–446 (2013).
[Crossref]

Appl. Phys. Lett. (1)

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33(1), 62–64 (1978).
[Crossref]

Appl. Surf. Sci. (1)

C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R. P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253(19), 8300–8303 (2007).
[Crossref]

Electron. Lett. (1)

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33(13), 1148–1149 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-loss planar optical waveguides fabricated in SIMOX material,” IEEE Photonics Technol. Lett. 4(6), 633–635 (1992).
[Crossref]

J. Alloys Compd. (1)

A. A. Reddy, S. S. Babu, K. Pradeesh, C. J. Otton, and G. Vijaya Prakash, “Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission,” J. Alloys Compd. 509(9), 4047–4052 (2011).
[Crossref]

J. Cryst. Growth (1)

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin disc lasers,” J. Cryst. Growth 275(1–2), 135–140 (2005).
[Crossref]

J. Electrochem. Soc. (1)

G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006).
[Crossref]

J. Micromech. Microeng. (1)

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

E. Snoeks, G. N. Van Den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. 12(8), 1468 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Laser Phys. Lett. (1)

F. Ay, I. Iñurrategui, D. Geskus, S. Aravazhi, and M. Pollnau, “Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities,” Laser Phys. Lett. 8(6), 423–430 (2011).
[Crossref]

Microelectron. Reliab. (1)

C.-T. Ko, K.-N. Chen, G. Cha, R. Gafiteanu, and U. Gosele, “Low temperature bonding technology for 3D integration,” Microelectron. Reliab. 3(1), 29–35 (1994).

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms (1)

T. R. Chung, L. Yang, N. Hosoda, and T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms 121, 203–206 (1997).

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. 34(1), 23–26 (2011).
[Crossref]

Proc. SPIE (2)

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguiló, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb,Gd,Lu:KYW inverted rib waveguide laser,” Proc. SPIE 8599, 859905 (2013).
[Crossref]

M. A. Sefunc, F. Segerink, and S. Garcia-Blanco, “High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip,” Proc. SPIE 9365, 93650P (2015).
[Crossref]

Pure Appl. Opt. J. Eur. Opt. Soc. Part A (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2(6), 683–700 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) End-facet of a thin (2.4 μm) KY(WO4)2 layer bonded onto a fused silica substrate by NOA81 adhesive. The end-facet has been polished using focused ion beam; (b) Atomic force microscope AFM) scan of the surface of the transferred KY(WO4)2 layer (AFM Fast Scan, Bruker, DE). A 0.9x0.9 μm2 area was scanned with an 8 nm radius tip. The surface root-mean-square roughness is as low as 0.17 nm.
Fig. 2
Fig. 2 (a) Scanning electron microscope (SEM) image of the cross-section of a FIB milled rib passive KY(WO4)2 channel waveguide. The corresponding dimensions are given on the image; (b) Tilted SEM image of the waveguides on the layer. The waveguides covered with a yellow solid line with labels “W1”, “W2” and “W3” were characterized in this study. The length of the “W1”, “W2” and “W3” waveguides are 200 μm, 250 μm and 300 μm, respectively. At the end of each waveguide, a reflector is etched to ensure the same reflectivity from both waveguide end-facets. Triangular anti-reflectors are etched away at the end of the waveguides to minimize the possible reflection that goes back to the waveguide end-facets; (c) SEM image of the deep reflectors at the output end-facets; (d) Simulated 2-D transverse-electric (TE) mode profile at the cross-section of the rib waveguide given at λ = 1.55 μm. The optical axes of the KY(WO4)2 crystal are shown. The calculated effective refractive index is 1.9492 at the wavelength of 1.55 μm.
Fig. 3
Fig. 3 Schematic of the optical setup built for the characterization of the propagation loss of KY(WO4)2 waveguides based on Fabry-Perot method around λ = 1.55 μm.
Fig. 4
Fig. 4 Example of measured and fitted reflected signals from the FIB-patterned high-contrast waveguide. W2 (200 μm length).

Tables (2)

Tables Icon

Table 1 Refractive indices of the materials utilized in the simulations, indicating the Sellmeier equation utilized to fit the refractive index and its coefficients. Lambda in micrometers.

Tables Icon

Table 2 Parameters used for the fits to the measured data. R2 of the fit, R2 = 0.94.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P R = η P 0 r 2 2 r 2 e 2 α L cos δ + r 2 e 4 α L 1 2 r 2 e 2 α L cos δ + r 4 e 4 α L + o f f s e t

Metrics