Abstract

Distinguishing authentic and artificial Chinese freshwater pearls involves various tools and techniques, based primarily on visual inspection and spectroscopy. These methods are highly variable and thus not statistically reliable. This study investigates the capacity of spectroscopic optical coherence tomography (S-OCT) to classify authentic and artificial pearls in the NIR spectral range. The major advantage of S-OCT is that it allows spectroscopic measurements from within pearls, unlike traditional methods such as diffuse reflectance spectroscopy that primarily probe the surface. S-OCT spectral data was analyzed using principal component analysis (PCA) and partial least-squares discriminant analysis (PLSDA) to classify pearls. The implemented models successfully predicted pearl type and met performance metrics. The results show that S-OCT models could be used for more objective discrimination of authentic versus artificial pearls.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal analysis of pearls and pearl treatments by using optical coherence tomography and fluorescence spectroscopy

Myeong Jin Ju, Sang Jin Lee, Yuri Kim, Jun Geun Shin, Hae Yeon Kim, Yiheng Lim, Yoshiaki Yasuno, and Byeong Ha Lee
Opt. Express 19(7) 6420-6432 (2011)

Evaluating and identifying pearls and their nuclei by using optical coherence tomography

Myeong Jin Ju, Sang Jin Lee, Eun Jung Min, Yuri Kim, Hae Yeon Kim, and Byeong Ha Lee
Opt. Express 18(13) 13468-13477 (2010)

Quantitative discrimination of pearls using polarization-sensitive optical coherence tomography

Jae Hwi Lee, Jun Geun Shin, Hae Yeon Kim, and Byeong Ha Lee
Appl. Opt. 57(9) 2197-2201 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Fiske and J. Shepherd, “Continuity and change in Chinese freshwater pearl culture,” Gems & Gemology 43(2), 138–145 (2007).
    [Crossref]
  2. L. Kiefert, H. A. Haenni, and J.-P. Chalain, “Identification of gemstone treatments with Raman spectroscopy,” Proc. SPIE 4098, 241–251 (2000).
    [Crossref]
  3. A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
    [Crossref]
  4. D. Bersani and P. P. Lottici, “Applications of Raman spectroscopy to gemology,” Anal. Bioanal. Chem. 397(7), 2631–2646 (2010).
    [Crossref] [PubMed]
  5. B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
    [Crossref] [PubMed]
  6. S. Karampelas, “Overview of pearl testing; classic methods and new developments,” in 5th European Gemmological Symposium (NEL & GGN Leiden, 2013), The Netherlands, pp 10–13.
  7. S. Agatonovic-Kustrin and D. W. Morton, “The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality,” Mar. Drugs 10(12), 1459–1475 (2012).
    [Crossref] [PubMed]
  8. K. Nagai, “A history of the cultured pearl industry,” Zool. Sci. 30(10), 783–793 (2013).
    [Crossref] [PubMed]
  9. M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
    [Crossref]
  10. J. Rosc, V. M. F. Hammer, and R. Brunner, “X-ray computed tomography for fast and non-destructive multiple pearl inspection,” Case Studies in Nondestructive Testing and Evaluation 6, 32–37 (2016).
    [Crossref]
  11. M. Loesdau, S. Chabrier, and A. Gabillon, “Computer vision based nacre thickness measurement of Tahitian pearls,” In Thirteenth International Conference on Quality Control by Artificial Vision (International Society for Optics and Photonics, 2017), Vol. 10338.
  12. M. J. Ju, S. J. Lee, Y. Kim, J. G. Shin, H. Y. Kim, Y. Lim, Y. Yasuno, and B. H. Lee, “Multimodal analysis of pearls and pearl treatments by using optical coherence tomography and fluorescence spectroscopy,” Opt. Express 19(7), 6420–6432 (2011).
    [Crossref] [PubMed]
  13. E. A. Swanson and J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact,” Biomed. Opt. Express 8(3), 1638–1664 (2017).
    [Crossref] [PubMed]
  14. M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express 18(13), 13468–13477 (2010).
    [Crossref] [PubMed]
  15. Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
    [Crossref] [PubMed]
  16. A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
    [Crossref] [PubMed]
  17. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  18. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [Crossref] [PubMed]
  19. T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1(2), 105–111 (2014).
    [Crossref]
  20. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
    [Crossref] [PubMed]
  21. Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, “Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,” Biomed. Opt. Express 6(9), 3339–3345 (2015).
    [Crossref] [PubMed]
  22. H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 1324876, 1–21 (2017).
    [Crossref]
  23. W.-H. Su, H.-J. He, and D.-W. Sun, “Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review,” Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017).
    [Crossref] [PubMed]
  24. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref] [PubMed]
  25. Y. Sun and M. Lei, “Automated thickness measurements of nacre from optical coherence tomography using polar transform and probability density projection,” in Proceedings of 2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),(IEEE, 2010), pp1–4.
  26. M. Lei, Y. Sun, D. Wang, and P. Li, “Automated thickness measurements of pearl from optical coherence tomography images.” in Proceedings of Ninth International Conference on Hybrid Intelligent Systems, (IEEE, 2009), pp 247–251 (2008).
  27. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [Crossref] [PubMed]

2017 (3)

E. A. Swanson and J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact,” Biomed. Opt. Express 8(3), 1638–1664 (2017).
[Crossref] [PubMed]

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 1324876, 1–21 (2017).
[Crossref]

W.-H. Su, H.-J. He, and D.-W. Sun, “Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review,” Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

J. Rosc, V. M. F. Hammer, and R. Brunner, “X-ray computed tomography for fast and non-destructive multiple pearl inspection,” Case Studies in Nondestructive Testing and Evaluation 6, 32–37 (2016).
[Crossref]

2015 (2)

A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, “Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,” Biomed. Opt. Express 6(9), 3339–3345 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

K. Nagai, “A history of the cultured pearl industry,” Zool. Sci. 30(10), 783–793 (2013).
[Crossref] [PubMed]

2012 (1)

S. Agatonovic-Kustrin and D. W. Morton, “The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality,” Mar. Drugs 10(12), 1459–1475 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express 18(13), 13468–13477 (2010).
[Crossref] [PubMed]

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

D. Bersani and P. P. Lottici, “Applications of Raman spectroscopy to gemology,” Anal. Bioanal. Chem. 397(7), 2631–2646 (2010).
[Crossref] [PubMed]

2009 (2)

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

2007 (1)

D. Fiske and J. Shepherd, “Continuity and change in Chinese freshwater pearl culture,” Gems & Gemology 43(2), 138–145 (2007).
[Crossref]

2000 (3)

L. Kiefert, H. A. Haenni, and J.-P. Chalain, “Identification of gemstone treatments with Raman spectroscopy,” Proc. SPIE 4098, 241–251 (2000).
[Crossref]

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[Crossref] [PubMed]

1998 (1)

A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
[Crossref]

Agatonovic-Kustrin, S.

S. Agatonovic-Kustrin and D. W. Morton, “The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality,” Mar. Drugs 10(12), 1459–1475 (2012).
[Crossref] [PubMed]

Andreev, G. N.

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

Aponick, A.

A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
[Crossref]

Bersani, D.

D. Bersani and P. P. Lottici, “Applications of Raman spectroscopy to gemology,” Anal. Bioanal. Chem. 397(7), 2631–2646 (2010).
[Crossref] [PubMed]

Brown, W. J.

Brunner, R.

J. Rosc, V. M. F. Hammer, and R. Brunner, “X-ray computed tomography for fast and non-destructive multiple pearl inspection,” Case Studies in Nondestructive Testing and Evaluation 6, 32–37 (2016).
[Crossref]

Chalain, J.-P.

L. Kiefert, H. A. Haenni, and J.-P. Chalain, “Identification of gemstone treatments with Raman spectroscopy,” Proc. SPIE 4098, 241–251 (2000).
[Crossref]

Chalus, P.

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

Chen, C. L.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Chen, X.

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

Chen, Z.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

de Boer, J. F.

Drexler, W.

Fiske, D.

D. Fiske and J. Shepherd, “Continuity and change in Chinese freshwater pearl culture,” Gems & Gemology 43(2), 138–145 (2007).
[Crossref]

Friess, S. D.

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

Fujimoto, J. G.

Graf, R. N.

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Haenni, H. A.

L. Kiefert, H. A. Haenni, and J.-P. Chalain, “Identification of gemstone treatments with Raman spectroscopy,” Proc. SPIE 4098, 241–251 (2000).
[Crossref]

Hammer, V. M. F.

J. Rosc, V. M. F. Hammer, and R. Brunner, “X-ray computed tomography for fast and non-destructive multiple pearl inspection,” Case Studies in Nondestructive Testing and Evaluation 6, 32–37 (2016).
[Crossref]

Hanni, H. A.

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

He, H.-J.

W.-H. Su, H.-J. He, and D.-W. Sun, “Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review,” Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017).
[Crossref] [PubMed]

Ippen, E. P.

Johnston, C. R.

A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
[Crossref]

Ju, M. J.

Karampelas, S.

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

Kärtner, F. X.

Kiefert, L.

L. Kiefert, H. A. Haenni, and J.-P. Chalain, “Identification of gemstone treatments with Raman spectroscopy,” Proc. SPIE 4098, 241–251 (2000).
[Crossref]

Kim, H. Y.

Kim, J.

Kim, Y.

Klump, H. H.

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

Krzemnicki, M. S.

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

Lee, B. H.

Lee, S. J.

Lei, M.

Y. Sun and M. Lei, “Automated thickness measurements of nacre from optical coherence tomography using polar transform and probability density projection,” in Proceedings of 2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),(IEEE, 2010), pp1–4.

Lemij, H. G.

Levinson, H.

Li, X. D.

Lim, Y.

Liu, T.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

Lottici, P. P.

D. Bersani and P. P. Lottici, “Applications of Raman spectroscopy to gemology,” Anal. Bioanal. Chem. 397(7), 2631–2646 (2010).
[Crossref] [PubMed]

Maher, J. R.

Mao, J.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

Marchozzi, E.

A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
[Crossref]

Matthews, T. E.

Medina, M.

Min, E. J.

Mo, J.

Morgner, U.

Morton, D. W.

S. Agatonovic-Kustrin and D. W. Morton, “The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality,” Mar. Drugs 10(12), 1459–1475 (2012).
[Crossref] [PubMed]

Nagai, K.

K. Nagai, “A history of the cultured pearl industry,” Zool. Sci. 30(10), 783–793 (2013).
[Crossref] [PubMed]

Nam, H. S.

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 1324876, 1–21 (2017).
[Crossref]

Pitris, C.

Robles, F.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

Rosc, J.

J. Rosc, V. M. F. Hammer, and R. Brunner, “X-ray computed tomography for fast and non-destructive multiple pearl inspection,” Case Studies in Nondestructive Testing and Evaluation 6, 32–37 (2016).
[Crossref]

Sawatzki, J.

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

Schrader, B.

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

Schulz, H.

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

Selim, M. A.

Shepherd, J.

D. Fiske and J. Shepherd, “Continuity and change in Chinese freshwater pearl culture,” Gems & Gemology 43(2), 138–145 (2007).
[Crossref]

Shi, Y.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

Shin, J. G.

Su, W.-H.

W.-H. Su, H.-J. He, and D.-W. Sun, “Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review,” Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017).
[Crossref] [PubMed]

Sun, D.-W.

W.-H. Su, H.-J. He, and D.-W. Sun, “Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review,” Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and M. Lei, “Automated thickness measurements of nacre from optical coherence tomography using polar transform and probability density projection,” in Proceedings of 2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),(IEEE, 2010), pp1–4.

Swanson, E. A.

Vermeer, K. A.

Wang, R. K.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Wax, A.

Weda, J. J. A.

Wigal, C. T.

A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
[Crossref]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Yasuno, Y.

Yoo, H.

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 1324876, 1–21 (2017).
[Crossref]

Zhang, A.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhang, Q.

A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhao, Y.

Zhou, W.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

D. Bersani and P. P. Lottici, “Applications of Raman spectroscopy to gemology,” Anal. Bioanal. Chem. 397(7), 2631–2646 (2010).
[Crossref] [PubMed]

Appl. Spectrosc. Rev. (1)

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 1324876, 1–21 (2017).
[Crossref]

Biomed. Opt. Express (3)

Case Studies in Nondestructive Testing and Evaluation (1)

J. Rosc, V. M. F. Hammer, and R. Brunner, “X-ray computed tomography for fast and non-destructive multiple pearl inspection,” Case Studies in Nondestructive Testing and Evaluation 6, 32–37 (2016).
[Crossref]

Crit. Rev. Food Sci. Nutr. (1)

W.-H. Su, H.-J. He, and D.-W. Sun, “Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review,” Crit. Rev. Food Sci. Nutr. 57(5), 1039–1051 (2017).
[Crossref] [PubMed]

Gems & Gemology (2)

D. Fiske and J. Shepherd, “Continuity and change in Chinese freshwater pearl culture,” Gems & Gemology 43(2), 138–145 (2007).
[Crossref]

M. S. Krzemnicki, S. D. Friess, P. Chalus, H. A. Hanni, and S. Karampelas, “X-Ray Computed Microtomography: Distinguishing Natural Pearls from Beaded and Non-Beaded Cultured Pearls,” Gems & Gemology 46(2), 128–134 (2010).
[Crossref]

J. Biomed. Opt. (2)

A. Zhang, Q. Zhang, C. L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

J. Chem. Educ. (1)

A. Aponick, E. Marchozzi, C. R. Johnston, and C. T. Wigal, “Determining the authenticity of gemstones using Raman spectroscopy,” J. Chem. Educ. 75(4), 465–466 (1998).
[Crossref]

Mar. Drugs (1)

S. Agatonovic-Kustrin and D. W. Morton, “The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality,” Mar. Drugs 10(12), 1459–1475 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Proc. SPIE (1)

L. Kiefert, H. A. Haenni, and J.-P. Chalain, “Identification of gemstone treatments with Raman spectroscopy,” Proc. SPIE 4098, 241–251 (2000).
[Crossref]

Sci. Rep. (1)

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated internal classification of beadless Chinese Zhuji fleshwater pearls based on optical coherence tomography images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref] [PubMed]

Talanta (1)

B. Schrader, H. Schulz, G. N. Andreev, H. H. Klump, and J. Sawatzki, “Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art,” Talanta 53(1), 35–45 (2000).
[Crossref] [PubMed]

Zool. Sci. (1)

K. Nagai, “A history of the cultured pearl industry,” Zool. Sci. 30(10), 783–793 (2013).
[Crossref] [PubMed]

Other (4)

S. Karampelas, “Overview of pearl testing; classic methods and new developments,” in 5th European Gemmological Symposium (NEL & GGN Leiden, 2013), The Netherlands, pp 10–13.

M. Loesdau, S. Chabrier, and A. Gabillon, “Computer vision based nacre thickness measurement of Tahitian pearls,” In Thirteenth International Conference on Quality Control by Artificial Vision (International Society for Optics and Photonics, 2017), Vol. 10338.

Y. Sun and M. Lei, “Automated thickness measurements of nacre from optical coherence tomography using polar transform and probability density projection,” in Proceedings of 2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),(IEEE, 2010), pp1–4.

M. Lei, Y. Sun, D. Wang, and P. Li, “Automated thickness measurements of pearl from optical coherence tomography images.” in Proceedings of Ninth International Conference on Hybrid Intelligent Systems, (IEEE, 2009), pp 247–251 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Photographs of pearl samples; (a) Authentic CFWP; (b) Artificial pearls.
Fig. 2
Fig. 2 Selected pearl samples; (a) CFWP; (b) ABS; (c) GLA; (d) MOP; The pixels colored yellow indicate that the intensity is greater than threshold. (Scalebars at lower right equal 250 um); Insets of (a)-(d): Average normalized logarithmic depth-intensity profiles; The yellow squares indicate depth were the OCT signal was attenuated by a factor of 1/e. (e) Attenuation coefficients of all the pearl samples.
Fig. 3
Fig. 3 (Left) Average spectra of four pearl classes. Error bars show intra-class standard deviation. (Center) Score Plot of first principal component (PC1) versus second principal component (PC2). (Right) Basis spectra for PC1, PC2

Tables (2)

Tables Icon

Table 1 PLS-DA results for classification of four groups of pearls

Tables Icon

Table 2 PLS-DA results for classification of two groups of pearls

Metrics