Abstract

We present a study of femtosecond (1028 nm, 230 fs, 54.7 MHz) laser processing on molybdenum (Mo) thin films. Irradiations were done under ambient air as well as pure oxygen (O2) at various gauge pressures (4, 8, 12 and 16 psi). Our results indicate that the high heating rates associated with laser processing allow the production of different molybdenum oxides. Raman spectroscopy and scanning electron microscopy are used to characterize the molybdenum oxidation for the different irradiation and oxygen pressures parameters chosen showing a high correlation between well-defined oxidation zones and the oxygen pressure surrounding the samples during the irradiation of the Mo thin films.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of oxygen partial pressure on properties of asymmetric bipolar pulse dc magnetron sputtered TiO2 thin films

S. Maidul Haque, Pankaj R. Sagdeo, Archna Sagdeo, S. N. Jha, D. Bhattacharyya, and N. K. Sahoo
Appl. Opt. 54(13) 3817-3825 (2015)

Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold

A. Reyes-Contreras, M. Camacho-López, S. Camacho-López, O. Olea-Mejía, A. Esparza-García, J. G. Bañuelos-Muñetón, and M. A. Camacho-López
Opt. Mater. Express 7(6) 1777-1786 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Deb, “Physical properties of a transition metal oxide: optical and photoelectric properties of single crystal and thin film molybdenum trioxide,” Proc. R. Soc. Lond. A Math. Phys. Sci. 304(1477), 211–231 (1968).
    [Crossref]
  2. H. Gruber and E. Krautz, “Untersuchungen der elektrischen Leitflhigkeit und des Magnetowiderstandes im System Molybdän-Sauerstoff,” Phys. Status Solidi 62(2), 615–624 (1980).
    [Crossref]
  3. G. Blasse and M. Wiegel, “The luminescence of MoO3 and WO3: a comparison,” J. Alloys Compd. 224(2), 342–344 (1995).
    [Crossref]
  4. W.-S. Kim, H.-C. Kim, and S.-H. Hong, “Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method,” J. Nanopart. Res. 12(5), 1889–1896 (2010).
    [Crossref]
  5. C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
    [Crossref]
  6. D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
    [Crossref]
  7. T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
    [Crossref]
  8. C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: A review,” Appl. Phys., A Solids Surf. 57(1), 19–24 (1993).
    [Crossref]
  9. K. Bange, “Colouration of tungsten oxide fillms: A model for optically active coatings,” Sol. Energy Mater. Sol. Cells 58(1), 1–131 (1999).
    [Crossref]
  10. C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
    [Crossref]
  11. L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
    [Crossref]
  12. G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis (1997).
  13. E. Gallei and E. Schwab, “Development of technical catalysts,” Catal. Today 51(3-4), 535–546 (1999).
    [Crossref]
  14. S. D. Poletaev, “Laser ablation of thin films of molybdenum for the fabrication of contact masks elements of diffractive optics with high resolution,” Proc. Int. Conf. Inf. Technol. Nanotechnol. 82–89 (2015).
    [Crossref]
  15. P. A. Spevack and N. S. Mcintyre, “Thermal Reduction of MoO3,” J. Phys. Chem. C 96, 9029–9035 (1992).
  16. M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
    [Crossref]
  17. A. Blume, Synthese Und Strukturelle Untersuchungen von Molybdän-, Vanadium- Und Wolframoxiden Als Referenzverbindungen Für Die Heterogene Katalyse (2004).
  18. M. Dieterle and G. Mestl, “Raman spectroscopy of molybdenum oxides part1,” Phys. Chem. Chem. Phys. 4(5), 822–826 (2002).
    [Crossref]
  19. I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
    [Crossref]
  20. C. V. Ramana and C. M. Julien, “Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition,” Chem. Phys. Lett. 428(1-3), 114–118 (2006).
    [Crossref]
  21. J. Scarminio, A. Lourenço, and A. Gorenstein, “Electrochromism and photochromism in amorphous molybdenum oxide films,” Thin Solid Films 302(1-2), 66–70 (1997).
    [Crossref]
  22. K. Gesheva, A. Szekeres, and T. Ivanova, “Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides,” Sol. Energy Mater. Sol. Cells 76(4), 563–576 (2003).
    [Crossref]
  23. S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
    [Crossref]
  24. Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
    [Crossref]
  25. M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
    [Crossref]
  26. V. P. Veiko, M. V. Yarchuk, and I. Ivanov, “Mechanisms of thin Cr films modification under multipilse femtosecond laser action,” SPIE 7996, 799607 (2010).
  27. V. P. Veiko, M. V. Yarchuk, and A. I. Ivanov, “Study of low-threshold mechanisms for modifying the structure of thin chromium films under the action of supershort laser pulses,” J. Opt. Technol. 78(8), 512–518 (2011).
    [Crossref]
  28. C. Phipps, ed., Laser Ablation and Its Applications, Springer Series in Optical Sciences (Springer US, 2007), Vol. 129.
  29. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
    [Crossref]
  30. M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
    [Crossref]
  31. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  32. K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (2010), Vol. 135.
  33. M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
    [Crossref]
  34. M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
    [Crossref]
  35. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
    [Crossref]
  36. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
    [Crossref]
  37. S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).
  38. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
    [Crossref]
  39. M. A. Py, P. E. Schmid, and J. T. Vallin, “Raman scattering and structural properties of MoO3,” Nuovo Cim. B Ser. 11 38(2), 271–279 (1977).
    [Crossref]
  40. J. P. Thielemann, G. Weinberg, and C. Hess, “Controlled Synthesis and Characterization of Highly Dispersed Molybdenum Oxide Supported on Silica SBA-15,” ChemCatChem 3(11), 1814–1821 (2011).
    [Crossref]
  41. N. Floquet, O. Bertrand, and J. J. Heizmann, “Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum,” Oxid. Met. 37(3-4), 253–280 (1992).
    [Crossref]
  42. P. A. Spevack and N. S. McIntyre, “A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies,” J. Phys. Chem. 97(42), 11020–11030 (1993).
    [Crossref]
  43. M. Cano-Lara, “Tesis defendida por Miroslava Cano Lara y aprobada por el siguiente comité Dr. Santiago Camacho López,” CICESE (2013).
  44. S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
    [Crossref] [PubMed]
  45. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [Crossref]
  46. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel-man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 66, 375–377 (1974).
  47. L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).
  48. L. L. Y. Chang and B. Phillips, “Phase Relations in Refractory Metal‐Oxygen Systems,” J. Am. Ceram. Soc. 52(10), 527–533 (1969).
    [Crossref]
  49. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [Crossref] [PubMed]
  50. A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
    [Crossref]
  51. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, Inc., 1971).
  52. A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
    [Crossref]
  53. M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
    [Crossref]
  54. B. Sundqvist and G. Bäckström, “Thermal conduction of metals under pressure,” Rev. Sci. Instrum. 47(2), 177–182 (1976).
    [Crossref]
  55. Q. Wang, A. Chen, S. Li, H. Qi, Y. Qi, Z. Hu, and M. Jin, “Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu,” Appl. Opt. 54(27), 8235–8240 (2015).
    [Crossref] [PubMed]
  56. R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
    [Crossref] [PubMed]

2017 (1)

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

2016 (2)

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

2015 (1)

2014 (4)

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
[Crossref] [PubMed]

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

2013 (2)

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
[Crossref]

2012 (1)

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

2011 (5)

J. P. Thielemann, G. Weinberg, and C. Hess, “Controlled Synthesis and Characterization of Highly Dispersed Molybdenum Oxide Supported on Silica SBA-15,” ChemCatChem 3(11), 1814–1821 (2011).
[Crossref]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
[Crossref]

V. P. Veiko, M. V. Yarchuk, and A. I. Ivanov, “Study of low-threshold mechanisms for modifying the structure of thin chromium films under the action of supershort laser pulses,” J. Opt. Technol. 78(8), 512–518 (2011).
[Crossref]

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

2010 (3)

W.-S. Kim, H.-C. Kim, and S.-H. Hong, “Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method,” J. Nanopart. Res. 12(5), 1889–1896 (2010).
[Crossref]

V. P. Veiko, M. V. Yarchuk, and I. Ivanov, “Mechanisms of thin Cr films modification under multipilse femtosecond laser action,” SPIE 7996, 799607 (2010).

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

2009 (1)

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

2008 (3)

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

2006 (2)

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

C. V. Ramana and C. M. Julien, “Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition,” Chem. Phys. Lett. 428(1-3), 114–118 (2006).
[Crossref]

2003 (1)

K. Gesheva, A. Szekeres, and T. Ivanova, “Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides,” Sol. Energy Mater. Sol. Cells 76(4), 563–576 (2003).
[Crossref]

2002 (2)

M. Dieterle and G. Mestl, “Raman spectroscopy of molybdenum oxides part1,” Phys. Chem. Chem. Phys. 4(5), 822–826 (2002).
[Crossref]

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

2001 (1)

C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
[Crossref]

2000 (2)

Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
[Crossref]

M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
[Crossref]

1999 (2)

E. Gallei and E. Schwab, “Development of technical catalysts,” Catal. Today 51(3-4), 535–546 (1999).
[Crossref]

K. Bange, “Colouration of tungsten oxide fillms: A model for optically active coatings,” Sol. Energy Mater. Sol. Cells 58(1), 1–131 (1999).
[Crossref]

1997 (1)

J. Scarminio, A. Lourenço, and A. Gorenstein, “Electrochromism and photochromism in amorphous molybdenum oxide films,” Thin Solid Films 302(1-2), 66–70 (1997).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

1995 (1)

G. Blasse and M. Wiegel, “The luminescence of MoO3 and WO3: a comparison,” J. Alloys Compd. 224(2), 342–344 (1995).
[Crossref]

1994 (1)

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

1993 (2)

C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: A review,” Appl. Phys., A Solids Surf. 57(1), 19–24 (1993).
[Crossref]

P. A. Spevack and N. S. McIntyre, “A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies,” J. Phys. Chem. 97(42), 11020–11030 (1993).
[Crossref]

1992 (3)

M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
[Crossref]

P. A. Spevack and N. S. Mcintyre, “Thermal Reduction of MoO3,” J. Phys. Chem. C 96, 9029–9035 (1992).

N. Floquet, O. Bertrand, and J. J. Heizmann, “Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum,” Oxid. Met. 37(3-4), 253–280 (1992).
[Crossref]

1980 (1)

H. Gruber and E. Krautz, “Untersuchungen der elektrischen Leitflhigkeit und des Magnetowiderstandes im System Molybdän-Sauerstoff,” Phys. Status Solidi 62(2), 615–624 (1980).
[Crossref]

1977 (1)

M. A. Py, P. E. Schmid, and J. T. Vallin, “Raman scattering and structural properties of MoO3,” Nuovo Cim. B Ser. 11 38(2), 271–279 (1977).
[Crossref]

1976 (1)

B. Sundqvist and G. Bäckström, “Thermal conduction of metals under pressure,” Rev. Sci. Instrum. 47(2), 177–182 (1976).
[Crossref]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel-man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 66, 375–377 (1974).

1969 (1)

L. L. Y. Chang and B. Phillips, “Phase Relations in Refractory Metal‐Oxygen Systems,” J. Am. Ceram. Soc. 52(10), 527–533 (1969).
[Crossref]

1968 (1)

S. Deb, “Physical properties of a transition metal oxide: optical and photoelectric properties of single crystal and thin film molybdenum trioxide,” Proc. R. Soc. Lond. A Math. Phys. Sci. 304(1477), 211–231 (1968).
[Crossref]

Ajami, A. A.

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

Alloncle, P.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Amara, E. H.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Amoruso, S.

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel-man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 66, 375–377 (1974).

Aoki, T.

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

Arroyo, R.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

Axente, E.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Bäckström, G.

B. Sundqvist and G. Bäckström, “Thermal conduction of metals under pressure,” Rev. Sci. Instrum. 47(2), 177–182 (1976).
[Crossref]

Bange, K.

K. Bange, “Colouration of tungsten oxide fillms: A model for optically active coatings,” Sol. Energy Mater. Sol. Cells 58(1), 1–131 (1999).
[Crossref]

Bashir, S.

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

Benfarah, M.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Berger, P.

Bertolazzi, S.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Bertrand, O.

N. Floquet, O. Bertrand, and J. J. Heizmann, “Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum,” Oxid. Met. 37(3-4), 253–280 (1992).
[Crossref]

Bireche, F.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Blasse, G.

G. Blasse and M. Wiegel, “The luminescence of MoO3 and WO3: a comparison,” J. Alloys Compd. 224(2), 342–344 (1995).
[Crossref]

Brivio, J.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Bruneau, S.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Camacho-López, M. A.

M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
[Crossref]

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

Camacho-López, S.

M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
[Crossref]

Cano-Lara, M.

M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
[Crossref]

Chang, L. L. Y.

L. L. Y. Chang and B. Phillips, “Phase Relations in Refractory Metal‐Oxygen Systems,” J. Am. Ceram. Soc. 52(10), 527–533 (1969).
[Crossref]

Chen, A.

Chen, J. G.

M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
[Crossref]

Cheng, B.

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Colaianni, M. L.

M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
[Crossref]

Córdoba, G.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

Coustillier, G.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Deb, S.

S. Deb, “Physical properties of a transition metal oxide: optical and photoelectric properties of single crystal and thin film molybdenum trioxide,” Proc. R. Soc. Lond. A Math. Phys. Sci. 304(1477), 211–231 (1968).
[Crossref]

Deshpande, R.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Detty, A. P.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

Di Giulio, M.

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

Dieterle, M.

M. Dieterle and G. Mestl, “Raman spectroscopy of molybdenum oxides part1,” Phys. Chem. Chem. Phys. 4(5), 822–826 (2002).
[Crossref]

Dillon, A. C.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Domke, M.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

Eaton, S. M.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Emami Meibodi, A.

A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
[Crossref]

Englmaier, M.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Escobar-Alarcón, L.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

Esparza-García, A.

M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
[Crossref]

Feuer, A.

Floquet, N.

N. Floquet, O. Bertrand, and J. J. Heizmann, “Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum,” Oxid. Met. 37(3-4), 253–280 (1992).
[Crossref]

Foo, Y. L.

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Freitag, C.

Fuku, X. G.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Gallei, E.

E. Gallei and E. Schwab, “Development of technical catalysts,” Catal. Today 51(3-4), 535–546 (1999).
[Crossref]

Ganesan, V.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

Gao, Q. S.

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

Gesheva, K.

K. Gesheva, A. Szekeres, and T. Ivanova, “Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides,” Sol. Energy Mater. Sol. Cells 76(4), 563–576 (2003).
[Crossref]

Gillaspie, D. T.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Gorelik, S.

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Gorenstein, A.

J. Scarminio, A. Lourenço, and A. Gorenstein, “Electrochromism and photochromism in amorphous molybdenum oxide films,” Thin Solid Films 302(1-2), 66–70 (1997).
[Crossref]

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

Graf, T.

Granqvist, C. G.

C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: A review,” Appl. Phys., A Solids Surf. 57(1), 19–24 (1993).
[Crossref]

Gruber, H.

H. Gruber and E. Krautz, “Untersuchungen der elektrischen Leitflhigkeit und des Magnetowiderstandes im System Molybdän-Sauerstoff,” Phys. Status Solidi 62(2), 615–624 (1980).
[Crossref]

Guesdon, J. P.

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

Guillemoles, J.-F.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Hajakbari, F.

A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
[Crossref]

Haro-Poniatowski, E.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

He, S.

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

Heise, G.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Heizmann, J. J.

N. Floquet, O. Bertrand, and J. J. Heizmann, “Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum,” Oxid. Met. 37(3-4), 253–280 (1992).
[Crossref]

Hellwig, C.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Hermann, J.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Hess, C.

J. P. Thielemann, G. Weinberg, and C. Hess, “Controlled Synthesis and Characterization of Highly Dispersed Molybdenum Oxide Supported on Silica SBA-15,” ChemCatChem 3(11), 1814–1821 (2011).
[Crossref]

Hight Walker, A. R.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Hobley, J.

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Hojabri, A.

A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
[Crossref]

Holze, R.

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

Hong, S.-H.

W.-S. Kim, H.-C. Kim, and S.-H. Hong, “Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method,” J. Nanopart. Res. 12(5), 1889–1896 (2010).
[Crossref]

Hu, M.

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

Hu, X.

Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
[Crossref]

Hu, Z.

Huber, H. P.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Husinsky, W.

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

Hussain, O. M.

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

Imawan, C.

C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
[Crossref]

Itina, T.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

Ivanov, A. I.

Ivanov, I.

V. P. Veiko, M. V. Yarchuk, and I. Ivanov, “Mechanisms of thin Cr films modification under multipilse femtosecond laser action,” SPIE 7996, 799607 (2010).

Ivanova, T.

K. Gesheva, A. Szekeres, and T. Ivanova, “Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides,” Sol. Energy Mater. Sol. Cells 76(4), 563–576 (2003).
[Crossref]

Jin, M.

Jones, K. M.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Julien, C.

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

Julien, C. M.

C. V. Ramana and C. M. Julien, “Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition,” Chem. Phys. Lett. 428(1-3), 114–118 (2006).
[Crossref]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel-man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 66, 375–377 (1974).

Kautek, W.

M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
[Crossref]

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Kaviyarasu, K.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Khelfa, A.

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

Kim, H.-C.

W.-S. Kim, H.-C. Kim, and S.-H. Hong, “Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method,” J. Nanopart. Res. 12(5), 1889–1896 (2010).
[Crossref]

Kim, W.-S.

W.-S. Kim, H.-C. Kim, and S.-H. Hong, “Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method,” J. Nanopart. Res. 12(5), 1889–1896 (2010).
[Crossref]

Kim, Y. H.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Kim, Y. J.

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

Kis, A.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Kotsedi, L.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Krausz, F.

M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
[Crossref]

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Krautz, E.

H. Gruber and E. Krautz, “Untersuchungen der elektrischen Leitflhigkeit und des Magnetowiderstandes im System Molybdän-Sauerstoff,” Phys. Status Solidi 62(2), 615–624 (1980).
[Crossref]

Krüger, J.

M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
[Crossref]

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Kuai, S.

Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
[Crossref]

Kuznicki, T.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Lee, S. H.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Lenzner, M.

M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
[Crossref]

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Lethy, K. J.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

Li, S.

Lourenço, A.

J. Scarminio, A. Lourenço, and A. Gorenstein, “Electrochromism and photochromism in amorphous molybdenum oxide films,” Thin Solid Films 302(1-2), 66–70 (1997).
[Crossref]

Luo, T.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Maaza, M.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Mahadevan Pillai, V. P.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

Mahan, A. H.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Maloy, S. A.

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

Manno, D.

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

Matsushita, T.

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

McIntyre, N. S.

P. A. Spevack and N. S. McIntyre, “A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies,” J. Phys. Chem. 97(42), 11020–11030 (1993).
[Crossref]

P. A. Spevack and N. S. Mcintyre, “Thermal Reduction of MoO3,” J. Phys. Chem. C 96, 9029–9035 (1992).

Mestl, G.

M. Dieterle and G. Mestl, “Raman spectroscopy of molybdenum oxides part1,” Phys. Chem. Chem. Phys. 4(5), 822–826 (2002).
[Crossref]

Micocci, G.

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

Mishiro, K.

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Moghri Moazzen, M.

A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Nathala, C. S.

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

Navas, I.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

Nazri, G. A.

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

Nelson, A. T.

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Obermeier, E.

C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
[Crossref]

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Okuda, M.

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

Onuseit, V.

Pan, J.

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Pang, D.

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

Parilla, P. A.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Perel-man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel-man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 66, 375–377 (1974).

Phang, I. Y.

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

Phillips, B.

L. L. Y. Chang and B. Phillips, “Phase Relations in Refractory Metal‐Oxygen Systems,” J. Am. Ceram. Soc. 52(10), 527–533 (1969).
[Crossref]

Picquart, M.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

Py, M. A.

M. A. Py, P. E. Schmid, and J. T. Vallin, “Raman scattering and structural properties of MoO3,” Nuovo Cim. B Ser. 11 38(2), 271–279 (1977).
[Crossref]

Qi, H.

Qi, Y.

Rafique, M. S.

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

Ramana, C. V.

C. V. Ramana and C. M. Julien, “Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition,” Chem. Phys. Lett. 428(1-3), 114–118 (2006).
[Crossref]

Ramponi, R.

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Rapp, S.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

Rouhani, M.

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Rusydi, A.

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Sarrach, S.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Sartania, S.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Sathe, V.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

Scarminio, J.

J. Scarminio, A. Lourenço, and A. Gorenstein, “Electrochromism and photochromism in amorphous molybdenum oxide films,” Thin Solid Films 302(1-2), 66–70 (1997).
[Crossref]

Schmid, P. E.

M. A. Py, P. E. Schmid, and J. T. Vallin, “Raman scattering and structural properties of MoO3,” Nuovo Cim. B Ser. 11 38(2), 271–279 (1977).
[Crossref]

Schmidt, M.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

Schwab, E.

E. Gallei and E. Schwab, “Development of technical catalysts,” Catal. Today 51(3-4), 535–546 (1999).
[Crossref]

Serra, A.

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Siciliano, T.

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

Simpson, J. R.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Solzbacher, F.

C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
[Crossref]

Sooby, E. S.

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

Spevack, P. A.

P. A. Spevack and N. S. McIntyre, “A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies,” J. Phys. Chem. 97(42), 11020–11030 (1993).
[Crossref]

P. A. Spevack and N. S. Mcintyre, “Thermal Reduction of MoO3,” J. Phys. Chem. C 96, 9029–9035 (1992).

Spielmann, C.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Steffes, H.

C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
[Crossref]

Subramanian, G. S.

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Sundqvist, B.

B. Sundqvist and G. Bäckström, “Thermal conduction of metals under pressure,” Rev. Sci. Instrum. 47(2), 177–182 (1976).
[Crossref]

Suzuki, A.

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

Szekeres, A.

K. Gesheva, A. Szekeres, and T. Ivanova, “Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides,” Sol. Energy Mater. Sol. Cells 76(4), 563–576 (2003).
[Crossref]

Tang, Y.

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

Thielemann, J. P.

J. P. Thielemann, G. Weinberg, and C. Hess, “Controlled Synthesis and Characterization of Highly Dispersed Molybdenum Oxide Supported on Silica SBA-15,” ChemCatChem 3(11), 1814–1821 (2011).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Vallin, J. T.

M. A. Py, P. E. Schmid, and J. T. Vallin, “Raman scattering and structural properties of MoO3,” Nuovo Cim. B Ser. 11 38(2), 271–279 (1977).
[Crossref]

Veiko, V. P.

V. P. Veiko, M. V. Yarchuk, and A. I. Ivanov, “Study of low-threshold mechanisms for modifying the structure of thin chromium films under the action of supershort laser pulses,” J. Opt. Technol. 78(8), 512–518 (2011).
[Crossref]

V. P. Veiko, M. V. Yarchuk, and I. Ivanov, “Mechanisms of thin Cr films modification under multipilse femtosecond laser action,” SPIE 7996, 799607 (2010).

Vinodkumar, R.

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wang, C.

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

Wang, Q.

Wang, Z.

Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
[Crossref]

Watson, M.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Weber, R.

Weinberg, G.

J. P. Thielemann, G. Weinberg, and C. Hess, “Controlled Synthesis and Characterization of Highly Dispersed Molybdenum Oxide Supported on Silica SBA-15,” ChemCatChem 3(11), 1814–1821 (2011).
[Crossref]

Weinberg, W. H.

M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
[Crossref]

Whitney, E.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Wiedenmann, M.

Wiegel, M.

G. Blasse and M. Wiegel, “The luminescence of MoO3 and WO3: a comparison,” J. Alloys Compd. 224(2), 342–344 (1995).
[Crossref]

Wu, X.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Wu, Y. P.

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

Xing, H. G.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Yan, R.

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Yang, L. C.

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

Yarchuk, M. V.

V. P. Veiko, M. V. Yarchuk, and A. I. Ivanov, “Study of low-threshold mechanisms for modifying the structure of thin chromium films under the action of supershort laser pulses,” J. Opt. Technol. 78(8), 512–518 (2011).
[Crossref]

V. P. Veiko, M. V. Yarchuk, and I. Ivanov, “Mechanisms of thin Cr films modification under multipilse femtosecond laser action,” SPIE 7996, 799607 (2010).

Yates, J. T.

M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
[Crossref]

Yu, X.

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

Zhang, S.

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Zhang, Y.

Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
[Crossref]

ACS Nano (1)

R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, “Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy,” ACS Nano 8(1), 986–993 (2014).
[Crossref] [PubMed]

Acta Phys. Pol. A (1)

A. Hojabri, F. Hajakbari, A. Emami Meibodi, and M. Moghri Moazzen, “Influence of Thermal Oxidation Temperatures on the Structural and Morphological Properties of MoO3 Thin Films,” Acta Phys. Pol. A 123(2), 307–308 (2013).
[Crossref]

Adv. Mater. (1)

S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, and A. C. Dillon, “Reversible lithium-ion insertion in molybdenum oxide nanoparticles,” Adv. Mater. 20(19), 3627–3632 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

Appl. Phys., A Solids Surf. (1)

C. G. Granqvist, “Transparent conductive electrodes for electrochromic devices: A review,” Appl. Phys., A Solids Surf. 57(1), 19–24 (1993).
[Crossref]

Appl. Surf. Sci. (4)

M. Rouhani, Y. L. Foo, J. Hobley, J. Pan, G. S. Subramanian, X. Yu, A. Rusydi, and S. Gorelik, “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Appl. Surf. Sci. 273, 150–158 (2013).
[Crossref]

M. Lenzner, F. Krausz, J. Krüger, and W. Kautek, “Photoablation with sub-10 fs laser pulses,” Appl. Surf. Sci. 154, 11–16 (2000).
[Crossref]

Y. Zhang, S. Kuai, Z. Wang, and X. Hu, “Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process,” Appl. Surf. Sci. 165(1), 56–59 (2000).
[Crossref]

L. Kotsedi, K. Kaviyarasu, X. G. Fuku, S. M. Eaton, E. H. Amara, F. Bireche, R. Ramponi, and M. Maaza, “Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study,” Appl. Surf. Sci. 421, 213–219 (2016).

Catal. Today (1)

E. Gallei and E. Schwab, “Development of technical catalysts,” Catal. Today 51(3-4), 535–546 (1999).
[Crossref]

Chem. Phys. Lett. (1)

C. V. Ramana and C. M. Julien, “Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition,” Chem. Phys. Lett. 428(1-3), 114–118 (2006).
[Crossref]

ChemCatChem (1)

J. P. Thielemann, G. Weinberg, and C. Hess, “Controlled Synthesis and Characterization of Highly Dispersed Molybdenum Oxide Supported on Silica SBA-15,” ChemCatChem 3(11), 1814–1821 (2011).
[Crossref]

J. Alloys Compd. (1)

G. Blasse and M. Wiegel, “The luminescence of MoO3 and WO3: a comparison,” J. Alloys Compd. 224(2), 342–344 (1995).
[Crossref]

J. Am. Ceram. Soc. (1)

L. L. Y. Chang and B. Phillips, “Phase Relations in Refractory Metal‐Oxygen Systems,” J. Am. Ceram. Soc. 52(10), 527–533 (1969).
[Crossref]

J. Appl. Phys. (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

J. Chem. Phys. (1)

S. He, S. Amoruso, D. Pang, C. Wang, and M. Hu, “Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser,” J. Chem. Phys. 144(16), 164703 (2016).
[Crossref] [PubMed]

J. Exp. Theor. Phys. (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel-man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” J. Exp. Theor. Phys. 66, 375–377 (1974).

J. Nanopart. Res. (1)

W.-S. Kim, H.-C. Kim, and S.-H. Hong, “Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method,” J. Nanopart. Res. 12(5), 1889–1896 (2010).
[Crossref]

J. Nucl. Mater. (1)

A. T. Nelson, E. S. Sooby, Y. J. Kim, B. Cheng, and S. A. Maloy, “High temperature oxidation of molybdenum in water vapor environments,” J. Nucl. Mater. 448(1-3), 441–447 (2014).
[Crossref]

J. Opt. Technol. (1)

J. Phys. Chem. (1)

P. A. Spevack and N. S. McIntyre, “A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies,” J. Phys. Chem. 97(42), 11020–11030 (1993).
[Crossref]

J. Phys. Chem. C (1)

P. A. Spevack and N. S. Mcintyre, “Thermal Reduction of MoO3,” J. Phys. Chem. C 96, 9029–9035 (1992).

J. Phys. D Appl. Phys. (3)

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan, V. Sathe, and V. P. Mahadevan Pillai, “Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing,” J. Phys. D Appl. Phys. 42(17), 175305 (2009).
[Crossref]

D. Manno, M. Di Giulio, A. Serra, T. Siciliano, and G. Micocci, “Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications,” J. Phys. D Appl. Phys. 35(3), 228–233 (2002).
[Crossref]

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys. 39(3), 453–460 (2006).
[Crossref]

J. Power Sources (1)

L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, and R. Holze, “MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery,” J. Power Sources 179(1), 357–360 (2008).
[Crossref]

Nuovo Cim. B Ser. 11 (1)

M. A. Py, P. E. Schmid, and J. T. Vallin, “Raman scattering and structural properties of MoO3,” Nuovo Cim. B Ser. 11 38(2), 271–279 (1977).
[Crossref]

Opt. Express (1)

Opt. Mater. (Amst) (2)

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. (Amst) 33(3), 480–484 (2011).
[Crossref]

M. Cano-Lara, S. Camacho-López, A. Esparza-García, and M. A. Camacho-López, “Laser-induced molybdenum oxide formation by low energy (nJ)–high repetition rate (MHz) femtosecond pulses,” Opt. Mater. (Amst) 33(11), 1648–1653 (2011).
[Crossref]

Oxid. Met. (1)

N. Floquet, O. Bertrand, and J. J. Heizmann, “Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum,” Oxid. Met. 37(3-4), 253–280 (1992).
[Crossref]

Phys. B Condens. Matter (1)

S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, and W. Husinsky, “Femtosecond laser fluence based nanostructuring of W and Mo in ethanol,” Phys. B Condens. Matter 513, 48–57 (2017).

Phys. Chem. Chem. Phys. (1)

M. Dieterle and G. Mestl, “Raman spectroscopy of molybdenum oxides part1,” Phys. Chem. Chem. Phys. 4(5), 822–826 (2002).
[Crossref]

Phys. Status Solidi (1)

H. Gruber and E. Krautz, “Untersuchungen der elektrischen Leitflhigkeit und des Magnetowiderstandes im System Molybdän-Sauerstoff,” Phys. Status Solidi 62(2), 615–624 (1980).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

S. Deb, “Physical properties of a transition metal oxide: optical and photoelectric properties of single crystal and thin film molybdenum trioxide,” Proc. R. Soc. Lond. A Math. Phys. Sci. 304(1477), 211–231 (1968).
[Crossref]

Rev. Sci. Instrum. (1)

B. Sundqvist and G. Bäckström, “Thermal conduction of metals under pressure,” Rev. Sci. Instrum. 47(2), 177–182 (1976).
[Crossref]

Sens. Actuators B Chem. (1)

C. Imawan, H. Steffes, F. Solzbacher, and E. Obermeier, “A new preparation method for sputtered MoO3 multilayers for the application in gas sensors,” Sens. Actuators B Chem. 78(1-3), 119–125 (2001).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

K. Bange, “Colouration of tungsten oxide fillms: A model for optically active coatings,” Sol. Energy Mater. Sol. Cells 58(1), 1–131 (1999).
[Crossref]

M. Rouhani, J. Hobley, G. S. Subramanian, I. Y. Phang, Y. L. Foo, and S. Gorelik, “The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films,” Sol. Energy Mater. Sol. Cells 126, 26–35 (2014).
[Crossref]

K. Gesheva, A. Szekeres, and T. Ivanova, “Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides,” Sol. Energy Mater. Sol. Cells 76(4), 563–576 (2003).
[Crossref]

Solid State Ion. (1)

C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa, and O. M. Hussain, “Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries,” Solid State Ion. 73(3-4), 319–326 (1994).
[Crossref]

SPIE (1)

V. P. Veiko, M. V. Yarchuk, and I. Ivanov, “Mechanisms of thin Cr films modification under multipilse femtosecond laser action,” SPIE 7996, 799607 (2010).

Surf. Sci. (1)

M. L. Colaianni, J. G. Chen, W. H. Weinberg, and J. T. Yates., “Oxygen on Mo(110): low-temperature adsorption and high-temperature oxidation,” Surf. Sci. 279(3), 211–222 (1992).
[Crossref]

Thin Solid Films (2)

J. Scarminio, A. Lourenço, and A. Gorenstein, “Electrochromism and photochromism in amorphous molybdenum oxide films,” Thin Solid Films 302(1-2), 66–70 (1997).
[Crossref]

T. Aoki, T. Matsushita, K. Mishiro, A. Suzuki, and M. Okuda, “Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method,” Thin Solid Films 517(4), 1482–1486 (2008).
[Crossref]

Other (7)

A. Blume, Synthese Und Strukturelle Untersuchungen von Molybdän-, Vanadium- Und Wolframoxiden Als Referenzverbindungen Für Die Heterogene Katalyse (2004).

G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis (1997).

S. D. Poletaev, “Laser ablation of thin films of molybdenum for the fabrication of contact masks elements of diffractive optics with high resolution,” Proc. Int. Conf. Inf. Technol. Nanotechnol. 82–89 (2015).
[Crossref]

C. Phipps, ed., Laser Ablation and Its Applications, Springer Series in Optical Sciences (Springer US, 2007), Vol. 129.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (2010), Vol. 135.

J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, Inc., 1971).

M. Cano-Lara, “Tesis defendida por Miroslava Cano Lara y aprobada por el siguiente comité Dr. Santiago Camacho López,” CICESE (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the experimental setup. L: laser, WP: wave plate, P: polarizer, M: mirror, SH: shutter, AL: aspheric lens, C: chamber, S: sample, XYS: XY stage, GT: gas tank, VP: vacuum pump. The inset shows a picture of the chamber where the thin films were laser irradiated.
Fig. 2
Fig. 2 Micrographs of irradiated molybdenum thin films (0.58 mJ/cm2, 10 s) in atmospheric air (a) and 16 psig O2 (b). c-d: SEM images from samples depicted in a-b, respectively. Different modified regions can be observed (labeled as I, II, III IV and V). The images suggest a crater-like morphology and crystallites in the inner region.
Fig. 3
Fig. 3 Representative Raman spectra for the different regions shown in Fig. 2. Some of the characteristic peaks of molybdenum oxides have been highlighted.
Fig. 4
Fig. 4 Light micrographs of molybdenum thin films irradiated for 1, 3, 5 and 10 seconds. Two sets of fluences (0.29 and 0.53 mJ/cm2) and two atmosphere conditions, ambient air (a.a.) and pressurized oxygen at 16 psig are depicted. The scale bar corresponds to 20 μm.
Fig. 5
Fig. 5 Outer (a) and inner (b) radius of the samples shown in Fig. 4. A representative micrograph has been used to indicate the corresponding plots for the inner/outer radius. Blue symbols correspond to ambient air conditions while red symbols correspond to 16 psig pressurized oxygen conditions. Dashed lines correspond to 0.29 mJ/cm2 and solid lines correspond to 0.53 mJ/cm2 of fluence. The laser beam radius has been indicated with a green star in both panels. Error bars represent the standard deviation from 3 radial measurements.
Fig. 6
Fig. 6 Light micrographs of molybdenum thin films irradiated at different fluences and with different atmospheric conditions. First column: molybdenum thin films irradiated in ambient air (a. a.) with fluences between 0.29 and 2.14 mJ/cm2. Second to fifth columns: molybdenum thin films irradiated in pressurized oxygen at 4, 8, 12, 16 psig and fluences between 0.29 and 2.14 mJ/cm2. The irradiation time for all the images shown was 10 s. All images are shown at the same scale.
Fig. 7
Fig. 7 SEM images of FIB cuts of irradiated molybdenum thin film at ambient air conditions (a) and pressurized oxygen at 8 psig (b). A crater-like morphology is clearly seen as different highs were measured along the cut. c) Inner (dashed line) and outer (solid line) radius as a function of fluence for two different ambient conditions: ambient air (blue symbols) and oxygen at 16 psig (red symbols). Lines are just a guide to the eye. d) Outer radius as a function of gauge pressure for different fluences and 5 s irradiation. In panel d) zero gauge pressure corresponds to ambient air conditions. The top (light red) curve corresponds to the highest fluence (2.14 mJ/cm2) while the bottom (light blue) curve corresponds to the lowest fluence studied in this work (0.29 mJ/cm2).
Fig. 8
Fig. 8 Schematic representation of the laser-induced oxidation of the molybdenum films. For simplicity, only the two most abundant oxides (MoO2 and MoO3) are depicted. The case of ambient air conditions is shown in a, b, c and d whereas pressurized oxygen condition is shown schematically in e, f, g and h. During the first microseconds of laser irradiation (a, e) a region of MoO2 appears. Then, the MoO2 region increases in mass and volume forming an elevation over the film (b, f). The appearance/growing of the MoO2 region for the case of pressurized oxygen condition is delayed/decreased due to a higher amount of heat extracted by convection. After a few milliseconds, the energy deposited in the film allows for a re-oxidation of MoO2 to MoO3 at the center of the laser beam (c, g). Then, volatilization of MoO3 occurs due to the low volatilization temperature of MoO3 [50,52,53] (d, h). Once the energy deposited in the film is much higher than the energy extracted by convection, the pressurized oxygen condition permits a broader re-oxidation of MoO3.

Tables (1)

Tables Icon

Table 1 Reported Raman peaks of molybdenum oxides [cm−1]

Metrics