Abstract

Intrinsic properties of a polyethylene glycol nanofiber are utilized for the first time to dynamically modify the spontaneous emission rate of encapsulated boradiazaindacene dye molecules with fluorescence lifetime imaging. Nanofibers, fabricated by the electrospinning technique, are exposed to relative humidity up to 80%. The spontaneous emission rate of the confined boradiazaindacene is observed to inhibit and enhance the nanofibers’ swelling. The Purcell factor is determined to demonstrate an oscillatory behavior resulting from the distinct characteristics of the mode volume, and the step-like increase of the quality factor of the nanofiber cavity due to the changes in the refractive index and fiber diameter.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters

Wenfang Li, Jinjin Du, and Síle Nic Chormaic
Opt. Lett. 43(8) 1674-1677 (2018)

Dye-embedded and nanopatterned hyperbolic metamaterials for spontaneous emission rate enhancement

K. H. Krishna, K. V. Sreekanth, and G. Strangi
J. Opt. Soc. Am. B 33(6) 1038-1043 (2016)

Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate

X. W. Chen, K. G. Lee, H. Eghlidi, S. Götzinger, and V. Sandoghdar
Opt. Express 23(26) 32986-32992 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
    [Crossref]
  3. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
    [Crossref] [PubMed]
  4. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [Crossref] [PubMed]
  5. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
    [Crossref] [PubMed]
  6. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
    [Crossref]
  7. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [Crossref] [PubMed]
  8. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
    [Crossref] [PubMed]
  9. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [Crossref] [PubMed]
  10. E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
    [Crossref] [PubMed]
  11. H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298(5597), 1372–1377 (2002).
    [Crossref] [PubMed]
  12. J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
    [Crossref] [PubMed]
  13. T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
    [Crossref] [PubMed]
  14. A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
    [Crossref]
  15. X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
    [Crossref] [PubMed]
  16. T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
    [Crossref]
  17. M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
    [Crossref]
  18. M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
    [Crossref] [PubMed]
  19. S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
    [Crossref]
  20. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
    [Crossref] [PubMed]
  21. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
    [Crossref]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  23. T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
    [Crossref] [PubMed]
  24. M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15(25), 17231–17240 (2007).
    [Crossref] [PubMed]
  25. S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
    [Crossref]
  26. A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
    [Crossref] [PubMed]
  27. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
    [Crossref]
  28. Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
    [Crossref] [PubMed]
  29. Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
    [Crossref] [PubMed]
  30. V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
    [Crossref] [PubMed]
  31. E. A. Power, Introductory Quantum Electrodynamics (American Elsevier, 1964).
  32. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [Crossref]
  33. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 9.
  34. J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
    [Crossref] [PubMed]
  35. B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
    [Crossref]
  36. A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
    [Crossref]
  37. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid micro cavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
    [Crossref]
  38. V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterial with broken structural symmetry,” Phys. Rev. E 68, 046606 (2003).
  39. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [Crossref] [PubMed]

2017 (1)

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

2016 (3)

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
[Crossref] [PubMed]

2014 (3)

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi, “Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates,” Opt. Express 22(10), 11713–11726 (2014).
[Crossref] [PubMed]

2013 (1)

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

2012 (1)

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

2011 (1)

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

2009 (3)

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

2007 (5)

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15(25), 17231–17240 (2007).
[Crossref] [PubMed]

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

2005 (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

2004 (3)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid micro cavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

2003 (2)

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterial with broken structural symmetry,” Phys. Rev. E 68, 046606 (2003).

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

2002 (5)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298(5597), 1372–1377 (2002).
[Crossref] [PubMed]

2001 (2)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

1998 (2)

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

1996 (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

1995 (1)

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

1988 (1)

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Acikgoz, S.

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

Aktas, G.

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Atkinson, P.

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

Baba, T.

Balet, L.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Barth, M.

Beetz, J.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Belov, P.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Benett, A. J.

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

Benson, O.

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Bhat, R.

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[Crossref] [PubMed]

Bilen, B.

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Birowosuto, M. D.

Bizzotto, D.

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

Bleuse, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Camposeo, A.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Chauvin, N.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Chirvony, V. S.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Chou, C. T.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Chung, E.

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Cingolani, R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Claudon, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Considine, C. R.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Creasey, M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Dash, P. R.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Demir, M. M.

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Di Benedetto, F.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Dispinar, T.

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298(5597), 1372–1377 (2002).
[Crossref] [PubMed]

Ellis, D. J. P.

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

Englund, D.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Fai Mak, K.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Farrer, I.

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Fernández-Lázaro, F.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Fiore, A.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Font-Sanchis, E.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Forchel, A.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Franke, H.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Furukawa, M.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Galfsky, T.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Gan, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Gao, Y.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Gérard, J. M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Glybovski, S.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[Crossref] [PubMed]

Golnik, A.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Grätzel, M.

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

Gregersen, N.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Grundmann, M.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Hatami, F.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Heinz, T. F.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[Crossref] [PubMed]

Hiroto, M.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Höfling, S.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Hommel, D.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Hone, J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Huang, Z. M.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Hugonin, J. P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Inada, Y.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Inci, M. N.

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Jakubczyk, T.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Jelezko, F.

Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
[Crossref] [PubMed]

Kamp, M.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Kell, A.

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid micro cavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

Kiraz, A.

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

Kistner, C.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Kita, S.

Kivshar, Y.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Ko, W. C.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Kochetova, L. A.

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterial with broken structural symmetry,” Phys. Rev. E 68, 046606 (2003).

Kodera, Y.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Kose, M. M.

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Kossacki, P.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Kotaki, M.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Kouba, J.

Krasnok, A.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Kruse, C.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[Crossref] [PubMed]

Lagendijk, A.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Lalanne, P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Lee, Y. H.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Lermer, M.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Löchel, B.

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298(5597), 1372–1377 (2002).
[Crossref] [PubMed]

Makarov, S.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Maksymov, I.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Malik, N. S.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Martinez-Pastor, J. P.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Matsushima, A.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Menon, V. M.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Midolo, L.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Mørk, J.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Narimanov, E. E.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Neves, A. A. R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Nielsen, T. R.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Nishimura, H.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Noda, S.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Notomi, M.

Nozaki, K.

Oupicky, D.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Pacuski, W.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Pan, L.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Pelton, M.

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

Petrov, M.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Pisignano, D.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Plenio, M. B.

Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterial with broken structural symmetry,” Phys. Rev. E 68, 046606 (2003).

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Ramakrishna, S.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Reitzenstein, S.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[Crossref] [PubMed]

Ritchie, D. A.

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Sanyal, A.

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Sasaki, H.

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Sastre-Santos, A.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Savelev, R.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Schacht, E. H.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Scherer, A.

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

Schmidt-Grund, R.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Schneider, C.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Sciesiek, M.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Seymour, L. W.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Shepherd, J. L.

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

Shields, A. J.

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

Shiue, R. J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Signoretto, M.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Simovski, C.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Sinclar, C. W.

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

Skacel, M.

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

Skarlatos, Y.

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Smolenski, T.

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid micro cavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

Sprik, R.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Stabile, R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Stingl, J.

Strauss, M.

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

Suárez, I.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

Sun, Z.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Takiguchi, M.

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Toncheva, V.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Trusheim, M. E.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Tuz, V. R.

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterial with broken structural symmetry,” Phys. Rev. E 68, 046606 (2003).

Ulbrich, K.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Unal, A. A.

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid micro cavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

van der Zande, A.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

van Tiggelen, B. A.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Weil, T.

Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
[Crossref] [PubMed]

Wolfert, M. A.

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Workentin, M. S.

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[Crossref] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

Yao, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Yapasan, E.

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

Yokoo, A.

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Zhang, G.

Zhang, Y. Z.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Zink-Lorre, N.

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

ACS Nano (1)

T. Jakubczyk, H. Franke, T. Smoleński, M. Sciesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel, and P. Kossacki, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors,” ACS Nano 8(10), 9970–9978 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, “Diamond Quantum Devices in Biology,” Angew. Chem. Int. Ed. Engl. 55(23), 6586–6598 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (8)

S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T. R. Nielsen, S. Höfling, J. Mørk, and A. Forchel, “Oscillatory variations in the Q factors of high quality micropillar cavities,” Appl. Phys. Lett. 94(6), 061108 (2009).
[Crossref]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett. 100(6), 061122 (2012).
[Crossref]

M. Signoretto, N. Zink-Lorre, J. P. Martınez-Pastor, E. Font-Sanchis, V. S. Chirvony, A. Sastre-Santos, F. Fernández-Lázaro, and I. Suárez, “Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes,” Appl. Phys. Lett. 111(8), 081102 (2017).
[Crossref]

A. J. Benett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90(19), 191911 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid micro cavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Acikgoz, M. M. Demir, E. Yapasan, A. Kiraz, A. A. Unal, and M. N. Inci, “Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method,” Appl. Phys., A Mater. Sci. Process. 116(4), 1867–1875 (2014).
[Crossref]

Biochim. Biophys. Acta (1)

V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht, “Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim. Biophys. Acta 1380(3), 354–368 (1998).
[Crossref] [PubMed]

Compos. Sci. Technol. (1)

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Europhys. Lett. (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38(2), 170–177 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

J. L. Shepherd, A. Kell, E. Chung, C. W. Sinclar, M. S. Workentin, and D. Bizzotto, “Selective Reductive Desorption of a SAM-Coated Gold Electrode Revealed Using Fluorescence Microscopy,” J. Am. Chem. Soc. 126(26), 8329–8335 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

B. Bilen, Y. Skarlatos, G. Aktas, M. N. Inci, T. Dispinar, M. M. Kose, and A. Sanyal, “In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films,” J. Appl. Phys. 102(7), 073534 (2007).
[Crossref]

Nano Lett. (1)

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Nature (3)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a Single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. E (1)

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterial with broken structural symmetry,” Phys. Rev. E 68, 046606 (2003).

Phys. Rev. Lett. (5)

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures,” Phys. Rev. Lett. 61(22), 2546–2549 (1988).
[Crossref] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic Single-Photon Source for Distributed Quantum Networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[Crossref] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Science (2)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

H. Mabuchi and A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298(5597), 1372–1377 (2002).
[Crossref] [PubMed]

Small (1)

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers,” Small 5(5), 562–566 (2009).
[Crossref] [PubMed]

Trends Biotechnol. (1)

Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura, and A. Matsushima, “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends Biotechnol. 13(3), 86–91 (1995).
[Crossref] [PubMed]

Other (2)

E. A. Power, Introductory Quantum Electrodynamics (American Elsevier, 1964).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Excitation of the BODIPY doped nanofiber (b) Electric field distributions of the BODIPY dye molecules confined in a single PEG nanofiber for 40% and 80% relative humidity values.
Fig. 2
Fig. 2 Optical setup.
Fig. 3
Fig. 3 FLIM images of the nanofibers at relative humidity values of (a) 40% and (b) 80%.
Fig. 4
Fig. 4 (a) Absorption and photoluminescence emission of BODIPY. (b) Fluorescence decay curves of BODIPY molecules in PEG nanofibers for 40% and 80% RH values.
Fig. 5
Fig. 5 The distribution of decay times as histograms for each humidity value given in Table 2.
Fig. 6
Fig. 6 Calculated and measured Purcell factors of the dye molecules confined in nanofiber corresponding to the RH values.
Fig. 7
Fig. 7 (a) Q factor versus relative humidity (b) Mode volume of the dye molecules confined in PEG nanofiber with respect to the changing RH values.
Fig. 8
Fig. 8 Mode volume versus (a) nanofiber diameter and (b) index of refraction.

Tables (2)

Tables Icon

Table 1 The average diameter and refractive index of the PEG nanofibers with respect to the RH values.

Tables Icon

Table 2 Fluorescence decay parameters of BODIPY molecules in PEG nanofiber for different RH values.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Γ = 1 τ = 2 π | < ƒ | H | i > | 2 ρ ( ω ) ,
ρ ( ω ) = n 3 ω 2 π 2 c 3 V ,
V = ε ( r ) | E ( r ) | 2 d V ε m a x ( r ) | E m a x ( r ) | 2 .
F p = Γ Γ 0 = 3 Q 4 π 2 V ( λ n ) 3 ,
Q = 2 π d λ r ( 1 r ) ,
I ( t ) = i = 1 n A i e x p ( t τ i ) ,
f i = A i τ i i A i τ i .
< τ > = i f i τ i .
  τ = i A i τ i i A i

Metrics