Abstract

Intracavity difference-frequency generation (DFG) between signal and idler pulses is investigated in orientation-patterned GaAs inside the cavity of a ~1 µm pumped nanosecond optical parametric oscillator (OPO). Using two different samples and temperature tuning in the non-critical configuration, tunability between 7 and 9.2 µm is demonstrated. The superior thermo-mechanical properties of OPGaAs enabled also for the first time operation of this cascaded scheme at kilohertz (1-3 kHz) repetition rates reaching average powers ~10 mW in the mid-IR.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7

Andrey A. Boyko, Nadezhda Y. Kostyukova, Valeriy Badikov, Dmitrii Badikov, Vladimir Panyutin, Galina Shevyrdyaeva, Valdas Pasiskevicius, Andrius Zukauskas, Georgi M. Marchev, Dmitry B. Kolker, and Valentin Petrov
Appl. Opt. 56(10) 2783-2786 (2017)

Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 µm

Andrey A. Boyko, Georgi M. Marchev, Valentin Petrov, Valdas Pasiskevicius, Dmitry B. Kolker, Andrius Zukauskas, and Nadezhda Y. Kostyukova
Opt. Express 23(26) 33460-33465 (2015)

Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 µm Tm,Ho:YLF laser

R. K. Feaver, R. D. Peterson, and P. E. Powers
Opt. Express 21(13) 16104-16110 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Boyko, G. M. Marchev, V. Petrov, V. Pasiskevicius, D. B. Kolker, A. Zukauskas, and N. Y. Kostyukova, “Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 µm,” Opt. Express 23(26), 33460–33465 (2015).
    [Crossref] [PubMed]
  2. A. A. Boyko, N. Y. Kostyukova, G. M. Marchev, V. Pasiskevicius, D. B. Kolker, A. Zukauskas, and V. Petrov, “Rb:PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2,” Opt. Lett. 41(12), 2791–2794 (2016).
    [Crossref] [PubMed]
  3. A. A. Boyko, N. Y. Kostyukova, V. Badikov, D. Badikov, V. Panyutin, G. Shevyrdyaeva, V. Pasiskevicius, A. Zukauskas, G. M. Marchev, D. B. Kolker, and V. Petrov, “Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7,” Appl. Opt. 56(10), 2783–2786 (2017).
    [Crossref] [PubMed]
  4. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  5. J. Wueppen, S. Nyga, B. Jungbluth, and D. Hoffmann, “1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength,” Opt. Lett. 41(18), 4225–4228 (2016).
    [Crossref] [PubMed]
  6. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29(16), 1912–1914 (2004).
    [Crossref] [PubMed]
  7. K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4-14 µm GaAs optical parametric oscillator pumped at 3 µm,” Opt. Express 22(4), 4131–4136 (2014).
    [Crossref] [PubMed]
  8. F. Gutty, A. Grisard, C. Larat, D. Papillon, M. Schwarz, B. Gerard, R. Ostendorf, M. Rattunde, J. Wagner, and E. Lallier, “140 W peak power laser system tunable in the LWIR,” Opt. Express 25(16), 18897–18906 (2017).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (2)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

A. A. Boyko, G. M. Marchev, V. Petrov, V. Pasiskevicius, D. B. Kolker, A. Zukauskas, and N. Y. Kostyukova, “Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 µm,” Opt. Express 23(26), 33460–33465 (2015).
[Crossref] [PubMed]

2014 (1)

2004 (1)

Badikov, D.

Badikov, V.

Becouarn, L.

Boyko, A. A.

Fejer, M. M.

Gerard, B.

Grisard, A.

Gutty, F.

Harris, J. S.

Hoffmann, D.

Jungbluth, B.

Kolker, D. B.

Kostyukova, N. Y.

Kuo, P. S.

Lallier, E.

Larat, C.

Levi, O.

Makasyuk, I.

Marchev, G. M.

Nyga, S.

Ostendorf, R.

Panyutin, V.

Papillon, D.

Pasiskevicius, V.

Petrov, V.

Pinguet, T. J.

Rattunde, M.

Schunemann, P. G.

Schwarz, M.

Shevyrdyaeva, G.

Vodopyanov, K. L.

Wagner, J.

Wueppen, J.

Zukauskas, A.

Appl. Opt. (1)

Opt. Express (3)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental set-up of the cascaded OPO-DFG pumped: (a) by a 100 Hz Q-switched diode-pumped Nd:YAG laser and (b) by a 0.1-5 kHz Q-switched diode-pumped Nd:YLF laser.
Fig. 2
Fig. 2 Photograph of the AR-coated OPGaAs sample #2 with designation of the crystallographic directions.
Fig. 3
Fig. 3 Input-output dependence obtained with OPGaAs #1 in the 100 Hz PPKTP OPO for two cavity lengths (a), and temperature tuning using the longer cavity (b).
Fig. 4
Fig. 4 Input-output (1) characteristics of the PPLN OPO (Λ1 = 31.5 µm) at 1 kHz without the OPGaAs crystal, for a cavity length of 135 mm.
Fig. 5
Fig. 5 (a) Temporal shapes of the pump (P) pulse at 1.053 µm, the signal (S) pulse at 1.89 µm and the DFG pulse at 9.2 µm from the PPLN OPO, and (b) M2 measurements of the DFG beam in the horizontal (h) and vertical (v) planes with 2D and 3D images of the spatial profiles recorded at 200 mm from the f = 50 mm BaF2 focusing lens used (insets). For both measurements OPGaAs #2 was employed at 1 kHz.

Tables (1)

Tables Icon

Table 1 Performance of the two OPGaAs DFG crystals in the PPLN OPO at the maximum incident pump energy Ep available for repetition rates fp between 1 and 3 kHz.

Metrics