Abstract

The ion-implantation method can fabricate TiO2 thin films of anatase and rutile structures in an alternate sequence together so that a wide range of applications can be realized. By changing the implantation parameters, the thickness of anatase and rutile thin films can be modulated, and films with a thickness of nano-scale can be achieved. An amorphous TiO2 thin film with a thickness of 13nm was formed in a rutile TiO2 single crystal by low energy He+ ions with high fluences, and this amorphous phase transformed to an anatase and even a rutile phase with thermal treatments. SEM and AFM were used to observe the surface morphology of TiO2 thin film. TEM and Raman scattering techniques confirmed the phase transition process in TiO2 thin films with temperature increase. The design of a combination of TiO2 thin films with both anatase and rutile phases together using the ion-implantation method is also explained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures

Bin Wang, Hongji Qi, Hu Wang, Yanyan Cui, Jiaoling Zhao, Jialu Guo, Yun Cui, Youchen Liu, Kui Yi, and Jianda Shao
Opt. Mater. Express 5(6) 1410-1418 (2015)

Raman spectral analysis of TiO2 thin films doped with rare-earth samarium

Chang-Hu Yang and Zhong-Quan Ma
Appl. Opt. 51(22) 5438-5441 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
    [Crossref]
  2. M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
    [Crossref]
  3. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
    [Crossref]
  4. D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
    [Crossref]
  5. S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
    [Crossref]
  6. F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
    [Crossref]
  7. P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251(1), 72–79 (1994).
    [Crossref]
  8. Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
    [Crossref]
  9. D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
    [Crossref]
  10. M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase development in sputter deposited titanium dioxide,” J. Vac. Sci. Technol. A 14(3), 772–776 (1996).
    [Crossref]
  11. M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71(3), 1421–1427 (1992).
    [Crossref]
  12. K. N. Rao, M. A. Murthy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176(2), 181–186 (1989).
    [Crossref]
  13. K. N. Rao and S. Mohan, “Optical properties of electron-beam evaporated TiO2 films deposited in an ionized oxygen medium,” J. Vac. Sci. Technol. A 8(4), 3260–3264 (1990).
    [Crossref]
  14. H. Y. Lee and H. G. Kim, “The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin Solid Films 229(2), 187–191 (1993).
    [Crossref]
  15. G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
    [Crossref]
  16. L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A 1(4), 1810–1819 (1983).
    [Crossref]
  17. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
    [Crossref]
  18. Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
    [Crossref]
  19. Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
    [Crossref]
  20. Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
    [Crossref] [PubMed]
  21. Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).
  22. A. Stepanov, “Applications of ion implantation for modification of TiO2: A review,” Rev. Adv. Mater. Sci. 30, 150–165 (2012).
  23. B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
    [Crossref]
  24. M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
    [Crossref]
  25. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [Crossref]
  26. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  27. Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
    [Crossref]
  28. Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
    [Crossref]
  29. Y.-J. Ma, F. Lu, B.-X. Xiang, J.-L. Zhao, and S.-C. Ruan, “Twinning and defect formation mechanism in He+/H+-implanted KTiOPO4,” Opt. Mater. Express 7(9), 3204–3213 (2017).
    [Crossref]
  30. T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
    [Crossref]
  31. A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
    [Crossref]
  32. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
    [Crossref]
  33. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
    [Crossref]
  34. D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
    [Crossref]
  35. V. H. Castrejón-Sánchez, E. Camps, and M. Camacho-López, “Quantification of phase content in TiO2 thin films by Raman spectroscopy,” Superf. Vacio 27(3), 88–92 (2014).
  36. U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. of Sol. St. Chem 42(3), 276–282 (1982).
    [Crossref]

2017 (1)

2016 (2)

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

2015 (2)

B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

2014 (1)

V. H. Castrejón-Sánchez, E. Camps, and M. Camacho-López, “Quantification of phase content in TiO2 thin films by Raman spectroscopy,” Superf. Vacio 27(3), 88–92 (2014).

2013 (3)

Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

2012 (2)

2006 (1)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

2005 (1)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

2003 (1)

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

2002 (1)

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

2001 (3)

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
[Crossref]

S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
[Crossref]

2000 (2)

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

1999 (1)

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1997 (1)

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

1996 (3)

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase development in sputter deposited titanium dioxide,” J. Vac. Sci. Technol. A 14(3), 772–776 (1996).
[Crossref]

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
[Crossref]

1994 (2)

G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
[Crossref]

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251(1), 72–79 (1994).
[Crossref]

1993 (2)

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

H. Y. Lee and H. G. Kim, “The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin Solid Films 229(2), 187–191 (1993).
[Crossref]

1992 (2)

M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71(3), 1421–1427 (1992).
[Crossref]

D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[Crossref]

1990 (1)

K. N. Rao and S. Mohan, “Optical properties of electron-beam evaporated TiO2 films deposited in an ionized oxygen medium,” J. Vac. Sci. Technol. A 8(4), 3260–3264 (1990).
[Crossref]

1989 (1)

K. N. Rao, M. A. Murthy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176(2), 181–186 (1989).
[Crossref]

1983 (1)

L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A 1(4), 1810–1819 (1983).
[Crossref]

1982 (1)

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. of Sol. St. Chem 42(3), 276–282 (1982).
[Crossref]

Afra, B.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Agilan, S.

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Aita, C. R.

M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase development in sputter deposited titanium dioxide,” J. Vac. Sci. Technol. A 14(3), 772–776 (1996).
[Crossref]

Bakhru, H.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Balachandran, U.

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. of Sol. St. Chem 42(3), 276–282 (1982).
[Crossref]

Balasundaraprabhu, R.

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Ballif, C.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Bally, A. R.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Battiston, G. A.

G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
[Crossref]

Bierschenk, T.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Bruel, M.

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
[Crossref]

Camacho-López, M.

V. H. Castrejón-Sánchez, E. Camps, and M. Camacho-López, “Quantification of phase content in TiO2 thin films by Raman spectroscopy,” Superf. Vacio 27(3), 88–92 (2014).

Camps, E.

V. H. Castrejón-Sánchez, E. Camps, and M. Camacho-López, “Quantification of phase content in TiO2 thin films by Raman spectroscopy,” Superf. Vacio 27(3), 88–92 (2014).

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Castrejón-Sánchez, V. H.

V. H. Castrejón-Sánchez, E. Camps, and M. Camacho-López, “Quantification of phase content in TiO2 thin films by Raman spectroscopy,” Superf. Vacio 27(3), 88–92 (2014).

Chen, M.

Choi, D. J.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Czternastek, H.

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

Debrus, S.

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

Dumitriu, D.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Eror, N. G.

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. of Sol. St. Chem 42(3), 276–282 (1982).
[Crossref]

Fan, R.

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Gagnaire, A.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Gerbasi, R.

G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
[Crossref]

Gibson, B. C.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Greentree, A. D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Guan, J.

B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
[Crossref]

Hess, D. W.

L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A 1(4), 1810–1819 (1983).
[Crossref]

Hones, P.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Hosono, H.

S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
[Crossref]

Hou, Y.-Q.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

Huang, N.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Huntington, S. T.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Huppertz, M.

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251(1), 72–79 (1994).
[Crossref]

Izuhara, T.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Jamieson, D. N.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Jang, H. K.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Jiao, Y.

B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
[Crossref]

Joseph, J.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Kim, H. G.

H. Y. Lee and H. G. Kim, “The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin Solid Films 229(2), 187–191 (1993).
[Crossref]

Kinbara, A.

D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[Crossref]

Kluth, P.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Kobayashi, A.

D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[Crossref]

Kremer, F.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Kwak, H.

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

Lee, H. Y.

H. Y. Lee and H. G. Kim, “The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin Solid Films 229(2), 187–191 (1993).
[Crossref]

Levy, M.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lévy, F.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Liu, X. H.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Liu, X.-H.

Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).

Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
[Crossref] [PubMed]

Llewellyn, D. J.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Löbl, P.

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251(1), 72–79 (1994).
[Crossref]

Lu, F.

Y.-J. Ma, F. Lu, B.-X. Xiang, J.-L. Zhao, and S.-C. Ruan, “Twinning and defect formation mechanism in He+/H+-implanted KTiOPO4,” Opt. Mater. Express 7(9), 3204–3213 (2017).
[Crossref]

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
[Crossref] [PubMed]

Ma, C.-D.

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Ma, Y.-J.

Y.-J. Ma, F. Lu, B.-X. Xiang, J.-L. Zhao, and S.-C. Ruan, “Twinning and defect formation mechanism in He+/H+-implanted KTiOPO4,” Opt. Mater. Express 7(9), 3204–3213 (2017).
[Crossref]

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
[Crossref] [PubMed]

Mao, Y. J.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Marigo, A.

G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
[Crossref]

Martinet, C.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Mergel, D.

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251(1), 72–79 (1994).
[Crossref]

Ming, X.-B.

Mohan, S.

M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71(3), 1421–1427 (1992).
[Crossref]

K. N. Rao and S. Mohan, “Optical properties of electron-beam evaporated TiO2 films deposited in an ionized oxygen medium,” J. Vac. Sci. Technol. A 8(4), 3260–3264 (1990).
[Crossref]

K. N. Rao, M. A. Murthy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176(2), 181–186 (1989).
[Crossref]

Mohan Rao, G.

M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71(3), 1421–1427 (1992).
[Crossref]

Moore, D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Mota Santiago, P.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Murthy, M. A.

K. N. Rao, M. A. Murthy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176(2), 181–186 (1989).
[Crossref]

Muthukumarasamy, N.

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Nelson, M. C.

M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase development in sputter deposited titanium dioxide,” J. Vac. Sci. Technol. A 14(3), 772–776 (1996).
[Crossref]

Odaka, H.

S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
[Crossref]

Olivero, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Osgood, R. M.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Paillard, V.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Pârvulescu, V. I.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Porchia, M.

G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
[Crossref]

Prawer, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Rabeau, J. R.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Radecka, M.

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

Radojevic, A. M.

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

Ranjitha, A.

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Rao, K. N.

K. N. Rao and S. Mohan, “Optical properties of electron-beam evaporated TiO2 films deposited in an ionized oxygen medium,” J. Vac. Sci. Technol. A 8(4), 3260–3264 (1990).
[Crossref]

K. N. Rao, M. A. Murthy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176(2), 181–186 (1989).
[Crossref]

Reeves, M. E.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Reichart, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Ridgway, M. C.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Rodriguez, M. D.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Roy, A. N.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Ruan, S.-C.

Rubanov, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Salzman, J.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Sanjinés, R.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Schauries, D.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Schmid, P. E.

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Stapinski, T.

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Stepanov, A.

A. Stepanov, “Applications of ion implantation for modification of TiO2: A review,” Rev. Adv. Mater. Sci. 30, 150–165 (2012).

Suhail, M. H.

M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71(3), 1421–1427 (1992).
[Crossref]

Suzuki, S.

S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
[Crossref]

Takeda, S.

S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
[Crossref]

Thambidurai, M.

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Wang, C.

S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
[Crossref]

Wang, C. H.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Wang, L.

B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
[Crossref]

Wang, T. M.

S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
[Crossref]

Wang, Y. G.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Wicaksana, D.

D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[Crossref]

Wiggins, M. D.

M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase development in sputter deposited titanium dioxide,” J. Vac. Sci. Technol. A 14(3), 772–776 (1996).
[Crossref]

Williams, L. M.

L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A 1(4), 1810–1819 (1983).
[Crossref]

Won, D. J.

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Wu, M.-S.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

Xiang, B.-X.

Y.-J. Ma, F. Lu, B.-X. Xiang, J.-L. Zhao, and S.-C. Ruan, “Twinning and defect formation mechanism in He+/H+-implanted KTiOPO4,” Opt. Mater. Express 7(9), 3204–3213 (2017).
[Crossref]

B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
[Crossref]

Xiang, G.

S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
[Crossref]

Xu, B.

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Yang, P.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Yin, J.-J.

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).

Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
[Crossref] [PubMed]

Zakrzewska, K.

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

Zeng, X. L.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Zhang, F.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Zhang, G.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

Zhao, J.-L.

Zhao, M.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

Zheng, S. K.

S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
[Crossref]

Zheng, Z. H.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Zhou, Z. Y.

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Zhuang, D.-M.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

Appl. Catal. B (1)

D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy, and V. I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Appl. Catal. B 25(2-3), 83–92 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutil phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys., A Mater. Sci. Process. 73(5), 595–600 (2001).
[Crossref]

Appl. Surf. Sci. (2)

M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapiński, and S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
[Crossref]

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218(1-4), 98–106 (2003).
[Crossref]

Diamond Related Materials (1)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

J. Appl. Phys. (1)

M. H. Suhail, G. Mohan Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71(3), 1421–1427 (1992).
[Crossref]

J. Mater. Res. (1)

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

J. Non-Cryst. Solids (1)

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

J. of Sol. St. Chem (1)

U. Balachandran and N. G. Eror, “Raman Spectra of Titanium Dioxide,” J. of Sol. St. Chem 42(3), 276–282 (1982).
[Crossref]

J. Vac. Sci. Technol. A (4)

D. Wicaksana, A. Kobayashi, and A. Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[Crossref]

M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase development in sputter deposited titanium dioxide,” J. Vac. Sci. Technol. A 14(3), 772–776 (1996).
[Crossref]

K. N. Rao and S. Mohan, “Optical properties of electron-beam evaporated TiO2 films deposited in an ionized oxygen medium,” J. Vac. Sci. Technol. A 8(4), 3260–3264 (1990).
[Crossref]

L. M. Williams and D. W. Hess, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol. A 1(4), 1810–1819 (1983).
[Crossref]

Mater. Sci. Eng. B (1)

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B (2)

B.-X. Xiang, Y. Jiao, J. Guan, and L. Wang, “Ion implantation induced blistering of rutile single crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B 354, 255–258 (2015).
[Crossref]

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
[Crossref]

Opt. Engineering (1)

Y.-J. Ma, F. Lu, J.-J. Yin, and X.-H. Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52 (9), 097101 (1–6) (2013).

Opt. Mater. (1)

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol-gel dip coating method,” Optik (Stuttg.) 124(23), 6201–6204 (2013).
[Crossref]

Rev. Adv. Mater. Sci. (1)

A. Stepanov, “Applications of ion implantation for modification of TiO2: A review,” Rev. Adv. Mater. Sci. 30, 150–165 (2012).

Superf. Vacio (1)

V. H. Castrejón-Sánchez, E. Camps, and M. Camacho-López, “Quantification of phase content in TiO2 thin films by Raman spectroscopy,” Superf. Vacio 27(3), 88–92 (2014).

Surf. Coat. Tech. (1)

F. Zhang, N. Huang, P. Yang, X. L. Zeng, Y. J. Mao, Z. H. Zheng, Z. Y. Zhou, and X. H. Liu, “Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,” Surf. Coat. Tech. 84(1-3), 476–479 (1996).
[Crossref]

Thin Solid Films (5)

P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251(1), 72–79 (1994).
[Crossref]

S. Takeda, S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films 392(2), 338–344 (2001).
[Crossref]

H. Y. Lee and H. G. Kim, “The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin Solid Films 229(2), 187–191 (1993).
[Crossref]

G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films 239(2), 186–191 (1994).
[Crossref]

K. N. Rao, M. A. Murthy, and S. Mohan, “Optical properties of electron-beam-evaporated TiO2 films,” Thin Solid Films 176(2), 181–186 (1989).
[Crossref]

Vacuum (1)

S. K. Zheng, T. M. Wang, G. Xiang, and C. Wang, “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method,” Vacuum 62(4), 361–366 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The diagram of layer splitting process using ion-implantation with wafer bonding methods
Fig. 2
Fig. 2 SEM images of TiO2 thin film (a) and remaining bulk (b), and morphology of TiO2 substrate measured by AFM in three-dimension (c), as well as height graph of step (d).
Fig. 3
Fig. 3 TEM images of as-implanted TiO2 sample in (a) and (b), and TEM image (c) and diffraction pattern (d) of TiO2 sample after annealing at 700°C.
Fig. 4
Fig. 4 Raman spectra of He+-implanted TiO2 sample and sample after annealing at 400°C.
Fig. 5
Fig. 5 Surface morphology of TiO2 thin film in as-implanted (a) and after annealing at 500°C observed by AFM.
Fig. 6
Fig. 6 Diagram of combination of TiO2 thin films in rutile and anatase phase together using ion-implantation method.

Tables (1)

Tables Icon

Table 1 Phase transformation of TiO2 thin films with temperature increasing

Metrics