Abstract

We report the results of the extensive spectral-luminescent characterization including concentration quenching analysis of the first laser-quality vapor-deposited Cr:ZnS films, and demonstrate their use as saturable absorbers. Comparison of spectral-luminescent properties with bulk Cr:ZnS indicates their high laser quality, opening the way towards industrial mid-IR thin-disk and waveguide lasers. Successful implementation of the grown films in a Q-switched Er,Yb:GdAB solid-state laser emitting at 1.52 μm gives clear experimental evidence of the high quality of the films.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vapor deposited Cr-doped ZnS thin films: towards optically pumped mid-infrared waveguide lasers

Eric A. Karhu, Charles R. Ildstad, Stefano Poggio, Vedran Furtula, Nikolai Tolstik, Irina T. Sorokina, Joseph J. Belbruno, and Ursula J. Gibson
Opt. Mater. Express 6(9) 2947-2955 (2016)

Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov
Opt. Express 18(25) 25999-26006 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  2. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
    [Crossref]
  3. I. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
    [Crossref]
  4. A. Sennaroglu, A. Ozgun Konza, and C. R. Pollock, “Continuous-wave power performance of a 2.47-μm Cr2+:ZnSe laser: experiment and modeling,” IEEE J. Quantum Electron. 36(10), 1199–1205 (2000).
    [Crossref]
  5. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
    [Crossref]
  6. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
    [Crossref]
  7. J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2,333 nm,” Opt. Express 22(6), 7052–7057 (2014).
    [Crossref] [PubMed]
  8. I. T. Sorokina, V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
    [Crossref]
  9. S. Xie, N. Tolstik, J. C. Travers, E. Sorokin, C. Caillaud, J. Troles, P. S. J. Russell, and I. T. Sorokina, “Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser,” Opt. Express 24(11), 12406–12413 (2016).
    [Crossref] [PubMed]
  10. I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr2+:ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
    [Crossref] [PubMed]
  11. V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
    [Crossref]
  12. V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
    [Crossref]
  13. K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
    [Crossref]
  14. K. Gorbachenya, V. Kisel, A. Yasukevich, P. Loiko, X. Mateos, V. Maltsev, N. Leonyuk, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and N. Kuleshov, “Graphene Q-switched Er,Yb:GdAl3(BO3)4 laser at 1550 nm,” Appl. Opt. 56(16), 4745–4749 (2017).
    [Crossref] [PubMed]
  15. D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
    [Crossref]
  16. L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
    [Crossref]
  17. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
    [Crossref] [PubMed]
  18. Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film,” Opt. Express 22(10), 11508–11515 (2014).
    [Crossref] [PubMed]
  19. E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
    [Crossref]
  20. N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
    [Crossref]
  21. B. Cole and L. Goldberg, “Highly efficient passively Q-switched Tm:YAP laser using a Cr:ZnS saturable absorber,” Opt. Lett. 42(12), 2259–2262 (2017).
    [Crossref] [PubMed]
  22. M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
    [Crossref]
  23. J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
    [Crossref]
  24. J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
    [Crossref] [PubMed]
  25. C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–240 (2011).
    [Crossref]
  26. B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
    [Crossref]
  27. M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
    [Crossref]
  28. A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
    [Crossref]
  29. R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
    [Crossref]
  30. L. E. Bausa, R. Legros, and A. Muñoz-Yagüe, “Nd3+ incorporation in CaF2 layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(2), 152–154 (1991).
    [Crossref]
  31. E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
    [Crossref]
  32. X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
    [Crossref]
  33. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
    [Crossref]
  34. T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
    [Crossref]
  35. R. A. Betts and C. W. Pitt, “Growth of thin-film lithium niobite by molecular beam epitaxy,” Electron. Lett. 21(21), 960–962 (1985).
    [Crossref]
  36. R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
    [Crossref]
  37. E. A. Karhu, C. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. Belbruno, and U. Gibson, “Vapor deposited Cr-doped ZnS thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6(9), 2947–2955 (2016).
    [Crossref]
  38. R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
    [Crossref]
  39. D. Minkov and R. Swanepoel, “Computerization of the optical characterization of a thin dielectric film,” Opt. Eng. 32(12), 3333–3337 (1993).
    [Crossref]
  40. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  41. I. T. Sorokina, “Crystalline Mid-Infrared Lasers,” in Solid-State Mid-Infrared Laser Sources (Topics in applied physics, v. 89), I. T. Sorokina and K. Vodopyanov, eds. (Springer Berlin / Heidelberg, 2003).
  42. A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
    [Crossref]
  43. F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
    [Crossref]
  44. W. G. Nilsen, “Raman Spectrum of Cubic ZnS,” Phys. Rev. 182(3), 838–850 (1969).
    [Crossref]
  45. Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
    [Crossref]
  46. J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
    [Crossref]
  47. S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jpn. J. Appl. Phys. 37(1), 1764–1767 (1998).
    [Crossref]
  48. T. Yokogawa, M. Ogura, and T. Kajiwara, “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices,” Appl. Phys. Lett. 52(2), 120–122 (1988).
    [Crossref]
  49. Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
    [Crossref] [PubMed]
  50. A. Okhrimchuk, M. Smayev, V. Likhov, E. Sorokin, N. Tolstik, and I. T. Sorokina, “Femtosecond laser writing of the depressed cladding buried channel waveguides in ZnS crystal,” Approved for publication in High-brightness Sources and Light-driven Interactions Congress 2018 (EUV&XRAY, HILAS, MICS), OSA Technical Digest (online) (Optical Society of America, 2018).
  51. G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
    [Crossref]
  52. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient diode-pumped Er,Yb:YAB laser,” presented at XII Conference on Laser Optics (LO-2006), St.Petersburg, Russia, 26–30 June 2006, paper TuR1–05.
  53. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, Spectroscopy and efficient laser operation of Er,Yb:YAl3(BO3)4 crystal, in Proceedings of 2nd EPS-QEOD Europhoton Conference on Solid-State and Fiber Coherent Light Sources, Pisa, Italy, 10–15 September 2006, paper TuC13.
  54. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
    [Crossref] [PubMed]
  55. N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
    [Crossref]
  56. V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
    [Crossref]
  57. K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
    [Crossref] [PubMed]
  58. K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
    [Crossref] [PubMed]

2017 (4)

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
[Crossref]

K. Gorbachenya, V. Kisel, A. Yasukevich, P. Loiko, X. Mateos, V. Maltsev, N. Leonyuk, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and N. Kuleshov, “Graphene Q-switched Er,Yb:GdAl3(BO3)4 laser at 1550 nm,” Appl. Opt. 56(16), 4745–4749 (2017).
[Crossref] [PubMed]

B. Cole and L. Goldberg, “Highly efficient passively Q-switched Tm:YAP laser using a Cr:ZnS saturable absorber,” Opt. Lett. 42(12), 2259–2262 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (4)

I. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

2014 (5)

2013 (3)

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
[Crossref]

2011 (2)

C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–240 (2011).
[Crossref]

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

2010 (2)

D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

2009 (2)

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

2008 (1)

J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

2007 (1)

2005 (3)

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

2004 (2)

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

2003 (1)

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

2002 (2)

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr2+:ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
[Crossref] [PubMed]

2001 (2)

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

2000 (2)

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

A. Sennaroglu, A. Ozgun Konza, and C. R. Pollock, “Continuous-wave power performance of a 2.47-μm Cr2+:ZnSe laser: experiment and modeling,” IEEE J. Quantum Electron. 36(10), 1199–1205 (2000).
[Crossref]

1999 (1)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

1998 (1)

S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jpn. J. Appl. Phys. 37(1), 1764–1767 (1998).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

1995 (1)

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

1994 (1)

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

1993 (1)

D. Minkov and R. Swanepoel, “Computerization of the optical characterization of a thin dielectric film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

1991 (2)

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

L. E. Bausa, R. Legros, and A. Muñoz-Yagüe, “Nd3+ incorporation in CaF2 layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(2), 152–154 (1991).
[Crossref]

1988 (1)

T. Yokogawa, M. Ogura, and T. Kajiwara, “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices,” Appl. Phys. Lett. 52(2), 120–122 (1988).
[Crossref]

1985 (1)

R. A. Betts and C. W. Pitt, “Growth of thin-film lithium niobite by molecular beam epitaxy,” Electron. Lett. 21(21), 960–962 (1985).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1969 (1)

W. G. Nilsen, “Raman Spectrum of Cubic ZnS,” Phys. Rev. 182(3), 838–850 (1969).
[Crossref]

Aas, L. M.

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Abdolvand, A.

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Aguiló, M.

Ahmad, H.

E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
[Crossref]

Allman, J.

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Badikov, V.

Bai, Z.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Bausa, L. E.

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

L. E. Bausa, R. Legros, and A. Muñoz-Yagüe, “Nd3+ incorporation in CaF2 layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(2), 152–154 (1991).
[Crossref]

Beecher, S. J.

Belbruno, J.

Berry, P. A.

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2,333 nm,” Opt. Express 22(6), 7052–7057 (2014).
[Crossref] [PubMed]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Betts, R. A.

R. A. Betts and C. W. Pitt, “Growth of thin-film lithium niobite by molecular beam epitaxy,” Electron. Lett. 21(21), 960–962 (1985).
[Crossref]

Bhutta, T.

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Bian, Y.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Boi, L.

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Burger, A.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Cai, Z.

Caillaud, C.

Camata, R. P.

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

Chardon, A. M.

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

Chattopadhyay, K.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Che, K.

Cheng, Y. C.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Chern, M. Y.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Chirila, M.

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Choi, S. Y.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

Chou, K. C.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Chu, P. K.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Clarkson, W. A.

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Cole, B.

Conner, J. R.

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

Cui, I.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

Daran, E.

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Denker, B. I.

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

Dianov, E. M.

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Díaz, F.

Dong, B.

D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Dong, J.

J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Dou, Z.

Dvoyrin, V.

I. T. Sorokina, V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

Fedorov, V.

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Feth, S.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Fontaine, C.

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

Furtula, V.

Galagan, B. I.

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

Gallian, A.

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Gao, F.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Ghadyani, Z.

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Gibson, U.

E. A. Karhu, C. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. Belbruno, and U. Gibson, “Vapor deposited Cr-doped ZnS thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6(9), 2947–2955 (2016).
[Crossref]

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Giesen, A.

G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
[Crossref]

Giles, N. C.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Goldberg, L.

Gorbachenya, K.

Gorbachenya, K. N.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref] [PubMed]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

Griebner, U.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–240 (2011).
[Crossref]

Guoyu, H.

Harun, S. W.

N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
[Crossref]

E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
[Crossref]

Hsieh, T. C.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Hsu, Y. Y.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Huang, Y.

Ildstad, C.

Ismail, E. I.

E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Jiang, B.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Jiang, X.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Jin, C. Q.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Kadir, N. A.

E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
[Crossref]

Kajiwara, T.

T. Yokogawa, M. Ogura, and T. Kajiwara, “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices,” Appl. Phys. Lett. 52(2), 120–122 (1988).
[Crossref]

Kaminskii, A.

J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Kar, A. K.

Karhu, E. A.

Kazakov, I. P.

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Kernal, J.

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Kildemo, M.

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Kisel, V.

Kisel, V. E.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref] [PubMed]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[Crossref] [PubMed]

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Konstantinov, V. I.

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Koporulina, E. V.

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[Crossref] [PubMed]

Krupke, W. P.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kuleshov, N.

Kuleshov, N. V.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref] [PubMed]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[Crossref] [PubMed]

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Kurilchik, S. V.

Lacoste, G.

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

Lahoz, F.

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

Lancaster, A.

Latiff, A. A.

N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
[Crossref]

E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
[Crossref]

Legros, R.

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

L. E. Bausa, R. Legros, and A. Muñoz-Yagüe, “Nd3+ incorporation in CaF2 layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(2), 152–154 (1991).
[Crossref]

Leng, Y.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Leonyuk, N.

Leonyuk, N. I.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref] [PubMed]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[Crossref] [PubMed]

Levchenko, V. I.

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Li, H.

Li, K.

Li, S. H.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Li, Y.

Liu, H. L.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Liu, J.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Liu, L.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Liu, W.

D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Lo, F. Y.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Loiko, P.

Lui, M.

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

Luo, M.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

Luo, Z.

Ma, X.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Macdonald, J. R.

Maltsev, V.

Maltsev, V. V.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref] [PubMed]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[Crossref] [PubMed]

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Martyshkin, D. V.

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

Mateos, X.

McFarlane, R. A.

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

McKee, R. A.

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

Minkov, D.

D. Minkov and R. Swanepoel, “Computerization of the optical characterization of a thin dielectric film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

Mirov, M.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Mirov, S.

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2,333 nm,” Opt. Express 22(6), 7052–7057 (2014).
[Crossref] [PubMed]

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Morgan, S. H.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

Mounts, T.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

Muñoz-Yagüe, A.

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

L. E. Bausa, R. Legros, and A. Muñoz-Yagüe, “Nd3+ incorporation in CaF2 layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(2), 152–154 (1991).
[Crossref]

Myers, T. H.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Ndap, J. O.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Nematollahi, M.

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Nilsen, W. G.

W. G. Nilsen, “Raman Spectrum of Cubic ZnS,” Phys. Rev. 182(3), 838–850 (1969).
[Crossref]

Nilsson, J.

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Ogura, M.

T. Yokogawa, M. Ogura, and T. Kajiwara, “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices,” Appl. Phys. Lett. 52(2), 120–122 (1988).
[Crossref]

Ozgun Konza, A.

A. Sennaroglu, A. Ozgun Konza, and C. R. Pollock, “Continuous-wave power performance of a 2.47-μm Cr2+:ZnSe laser: experiment and modeling,” IEEE J. Quantum Electron. 36(10), 1199–1205 (2000).
[Crossref]

Page, R. H.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Panyutin, V.

Payne, S. A.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Peng, J.

Peng, Y. P.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Petrov, V.

Philippov, V.

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Pilipenko, O. V.

Pitt, C. W.

R. A. Betts and C. W. Pitt, “Growth of thin-film lithium niobite by molecular beam epitaxy,” Electron. Lett. 21(21), 960–962 (1985).
[Crossref]

Poggio, S.

Pollock, C. R.

A. Sennaroglu, A. Ozgun Konza, and C. R. Pollock, “Continuous-wave power performance of a 2.47-μm Cr2+:ZnSe laser: experiment and modeling,” IEEE J. Quantum Electron. 36(10), 1199–1205 (2000).
[Crossref]

Postnova, L. I.

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

Prudnikova, M. B.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

Ptak, A. J.

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Rablau, C. I.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Razak, N. N.

N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
[Crossref]

Reenas, T. W.

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Renz, G.

G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
[Crossref]

Rotermund, F.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

Roy, U. N.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

Russell, P. S. J.

Schaffers, K. I.

I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr2+:ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
[Crossref] [PubMed]

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Schepler, K. L.

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2,333 nm,” Opt. Express 22(6), 7052–7057 (2014).
[Crossref] [PubMed]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Sennaroglu, A.

A. Sennaroglu, A. Ozgun Konza, and C. R. Pollock, “Continuous-wave power performance of a 2.47-μm Cr2+:ZnSe laser: experiment and modeling,” IEEE J. Quantum Electron. 36(10), 1199–1205 (2000).
[Crossref]

Serrano, C.

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Shcherbitsky, V. G.

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Shepherd, D.

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

Shepherd, D. P.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Song, Y.

Sorokin, E.

S. Xie, N. Tolstik, J. C. Travers, E. Sorokin, C. Caillaud, J. Troles, P. S. J. Russell, and I. T. Sorokina, “Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser,” Opt. Express 24(11), 12406–12413 (2016).
[Crossref] [PubMed]

I. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

I. T. Sorokina, V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
[Crossref]

I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr2+:ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
[Crossref] [PubMed]

Sorokina, I.

I. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

Sorokina, I. T.

Specht, E. D.

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

Speiser, J.

G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
[Crossref]

Su, C. H.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

Su, S. H.

S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jpn. J. Appl. Phys. 37(1), 1764–1767 (1998).
[Crossref]

Su, Y.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Su, Y. K.

S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jpn. J. Appl. Phys. 37(1), 1764–1767 (1998).
[Crossref]

Sun, S.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Sverchkov, S. E.

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

Swanepoel, R.

D. Minkov and R. Swanepoel, “Computerization of the optical characterization of a thin dielectric film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Tian, J.

Ting, Y. C.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Tolstik, N.

Tolstik, N. A.

Tompkins, R. P.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

Travers, J. C.

Troles, J.

Ueda, K. I.

J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Vanmil, B. L.

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Vasilyev, S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Walker, F. J.

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

Wang, L.

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Wang, L. J.

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

Wei, L.

D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Weng, J.

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Williams, J. E.

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010).
[Crossref] [PubMed]

Wu, X. L.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Xie, S.

Xu, B.

Xu, H.

Yagi, H.

J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Yang, X.

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Yap, D.

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

Yasukevich, A.

Yasukevich, A. S.

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref] [PubMed]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser,” Opt. Lett. 38(14), 2446–2448 (2013).
[Crossref] [PubMed]

Ye, C. W.

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Yokogawa, T.

T. Yokogawa, M. Ogura, and T. Kajiwara, “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices,” Appl. Phys. Lett. 52(2), 120–122 (1988).
[Crossref]

Yokoyama, M.

S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jpn. J. Appl. Phys. 37(1), 1764–1767 (1998).
[Crossref]

Yu, Z.

Zabezhaylov, A. O.

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

Zakaria, Z.

N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
[Crossref]

Zelmon, D. E.

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

Zhang, L.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Zhang, X.

Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film,” Opt. Express 22(10), 11508–11515 (2014).
[Crossref] [PubMed]

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

Zhao, X.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zheng, Z.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhong, M.

Zhong, W.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

Zhou, D.

D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Zhu, L.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zou, X.

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 – efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Appl. Phys. Lett. (4)

R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon,” Appl. Phys. Lett. 59(7), 782–784 (1991).
[Crossref]

T. Yokogawa, M. Ogura, and T. Kajiwara, “Low-loss short-wavelength optical waveguides using ZnSe-ZnS strained-layer superlattices,” Appl. Phys. Lett. 52(2), 120–122 (1988).
[Crossref]

A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005).
[Crossref]

L. E. Bausa, R. Legros, and A. Muñoz-Yagüe, “Nd3+ incorporation in CaF2 layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(2), 152–154 (1991).
[Crossref]

Electron. Lett. (2)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

R. A. Betts and C. W. Pitt, “Growth of thin-film lithium niobite by molecular beam epitaxy,” Electron. Lett. 21(21), 960–962 (1985).
[Crossref]

IEEE J. Quantum Electron. (5)

X. Zhang, F. Lahoz, C. Serrano, G. Lacoste, and E. Daran, “1.3 μm emission of Nd:LaF3 thin films grown by molecular beam epitaxy,” IEEE J. Quantum Electron. 36(2), 243–247 (2000).
[Crossref]

T. Bhutta, A. M. Chardon, D. Shepherd, E. Daran, C. Serrano, and A. Muñoz-Yagüe, “Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37(11), 1469–1477 (2001).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. P. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

A. Sennaroglu, A. Ozgun Konza, and C. R. Pollock, “Continuous-wave power performance of a 2.47-μm Cr2+:ZnSe laser: experiment and modeling,” IEEE J. Quantum Electron. 36(10), 1199–1205 (2000).
[Crossref]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

I. T. Sorokina, V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

I. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

J. Appl. Phys. (3)

E. Daran, R. Legros, A. Muñoz-Yagüe, C. Fontaine, and L. E. Bausa, “1.54 μm wavelength emission of highly Er-doped CaF2 layers grown by molecular beam epitaxy,” J. Appl. Phys. 76(1), 270–273 (1994).
[Crossref]

F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, “Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition,” J. Appl. Phys. 117(21), 213911 (2015).
[Crossref]

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106(12), 123505 (2009).
[Crossref]

J. Cryst. Growth (2)

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2–4), 249–256 (2001).
[Crossref]

V. V. Maltsev, E. V. Koporulina, N. I. Leonyuk, K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, and N. V. Kuleshov, “Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material,” J. Cryst. Growth 401, 807–812 (2014).
[Crossref]

J. Electron. Mater. (2)

B. L. Vanmil, A. J. Ptak, L. Boi, L. J. Wang, M. Chirila, N. C. Giles, T. H. Myers, and L. Wang, “Heavy Cr doping of ZnSe by molecular beam epitaxy,” J. Electron. Mater. 31(7), 770–775 (2002).
[Crossref]

M. Luo, B. L. Vanmil, R. P. Tompkins, I. Cui, T. Mounts, U. N. Roy, A. Burger, T. H. Myers, and N. C. Giles, “Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy,” J. Electron. Mater. 32(7), 737–744 (2003).
[Crossref]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jpn. J. Appl. Phys. 37(1), 1764–1767 (1998).
[Crossref]

Laser Phys. Lett. (1)

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, and N. V. Kuleshov, “Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber,” Laser Phys. Lett. 14(3), 035802 (2017).
[Crossref]

Opt. Commun. (1)

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and L. Zhu, “Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Opt. Eng. (1)

D. Minkov and R. Swanepoel, “Computerization of the optical characterization of a thin dielectric film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

Opt. Mater. Express (1)

Opt. Rev. (1)

J. Dong, K. I. Ueda, H. Yagi, and A. Kaminskii, “Laser-diode pumped self-Q-switched microchip lasers,” Opt. Rev. 15(2), 57–74 (2008).
[Crossref]

Photonics Lett. Pol. (1)

N. N. Razak, A. A. Latiff, Z. Zakaria, and S. W. Harun, “Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber,” Photonics Lett. Pol. 9(2), 72–74 (2017).
[Crossref]

Phys. Rev. (1)

W. G. Nilsen, “Raman Spectrum of Cubic ZnS,” Phys. Rev. 182(3), 838–850 (1969).
[Crossref]

Proc. SPIE (3)

J. E. Williams, D. V. Martyshkin, V. V. Fedorov, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Cr:ZnSe planar waveguide mid-IR laser,” Proc. SPIE 7912, 79121H (2011).
[Crossref]

G. Renz, J. Speiser, A. Giesen, I. T. Sorokina, and E. Sorokin, “Cr:ZnSe thin disk cw laser,” Proc. SPIE 8599, 85991M (2013).
[Crossref]

V. Philippov, A. Abdolvand, J. Nilsson, W. A. Clarkson, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–240 (2011).
[Crossref]

Quantum Electron. (1)

V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, L. I. Postnova, V. I. Levchenko, B. I. Galagan, B. I. Denker, and S. E. Sverchkov, “Passive Q switches for a diode-pumped erbium glass laser,” Quantum Electron. 35(7), 611–614 (2005).
[Crossref]

RSC Advances (1)

E. I. Ismail, N. A. Kadir, A. A. Latiff, H. Ahmad, and S. W. Harun, “Black phosphorus crystal as a saturable absorber for both Q-switched and mode-locked erbium-doped fiber laser,” RSC Advances 6(76), 72692–72697 (2016).
[Crossref]

Sci. Rep. (1)

Y. P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. Rep. 5(1), 18365 (2016).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. Nematollahi, X. Yang, L. M. Aas, Z. Ghadyani, M. Kildemo, U. Gibson, and T. W. Reenas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Other (4)

A. Okhrimchuk, M. Smayev, V. Likhov, E. Sorokin, N. Tolstik, and I. T. Sorokina, “Femtosecond laser writing of the depressed cladding buried channel waveguides in ZnS crystal,” Approved for publication in High-brightness Sources and Light-driven Interactions Congress 2018 (EUV&XRAY, HILAS, MICS), OSA Technical Digest (online) (Optical Society of America, 2018).

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient diode-pumped Er,Yb:YAB laser,” presented at XII Conference on Laser Optics (LO-2006), St.Petersburg, Russia, 26–30 June 2006, paper TuR1–05.

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, Spectroscopy and efficient laser operation of Er,Yb:YAl3(BO3)4 crystal, in Proceedings of 2nd EPS-QEOD Europhoton Conference on Solid-State and Fiber Coherent Light Sources, Pisa, Italy, 10–15 September 2006, paper TuC13.

I. T. Sorokina, “Crystalline Mid-Infrared Lasers,” in Solid-State Mid-Infrared Laser Sources (Topics in applied physics, v. 89), I. T. Sorokina and K. Vodopyanov, eds. (Springer Berlin / Heidelberg, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The raw transmission data (a) and the absorption spectra (b) of series of MBE-grown Cr:ZnS thin films with different dopant concentrations (data processed by Swanepoel analysis [38,39]), and absorption cross-section spectrum of Cr:ZnS single crystal (c).
Fig. 2
Fig. 2 The fluorescence spectra (a), and the emission cross-sections (b) of the Cr:ZnS thin films and single crystal
Fig. 3
Fig. 3 The fluorescence kinetics of the low-concentrated Cr:ZnS film samples at room temperature (a), the dependence of the fluorescence relative intensity (normalized quantum yield) on Cr2+ concentration (b).
Fig. 4
Fig. 4 Raman spectra of the sapphire substrate (black line), Cr:ZnS single crystal (orange line), and Cr:ZnS MBE-grown films with different Cr concentrations.
Fig. 5
Fig. 5 The experimental setup for Q-switched laser experiments with Cr:ZnS thin film saturable absorber (a), input-output characteristics of Er,Yb:GAB laser Q-switched by Cr:ZnS saturable absorber (inset shows the beam profile) (b), oscilloscope trace of the shortest optical pulse obtained from Cr:ZnS Q-switched Er,Yb:GAB laser (inset shows the corresponding pulse train) (c).

Metrics