Abstract

Interference lithography is an important method for fabricating periodical nano-structures. Its resolution, however, is limited with the minimum period being half the wavelength of light due to the diffraction limit. In this study, we presented bulk plasmon polariton (BPP) interference lithography with the resolution far beyond the diffraction limit. As a demonstrative result, a periodical line pattern of a 35 nm half-period (about 1/10 the wavelength of laser) over a large area (20 × 20 mm) was achieved in an experiment. The break of diffraction limit arises from exciting BPP modes with the high kx spatial frequency components inside hyperbolic metamaterial (HMM) composed by metal-dielectric multifilms. To enhance the contrast and intensity of the interference fringe field of two BPP modes, a metal cladding resist layer and optimized materials are employed. In addition, the period of interference patterns could be tuned by exciting BPP modes with variant kx spatial frequency. It is believed that the method with low cost, large area, and high resolution advantages has potential applications for manufacturing functional structures like gratings, polarizers and photonic crystals, etc.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons

Hongchao Liu, Weijie Kong, Kaipeng Liu, Chengwei Zhao, Wenjuan Du, Changtao Wang, Ling Liu, Ping Gao, Mingbo Pu, and Xiangang Luo
Opt. Express 25(17) 20511-20521 (2017)

Large-area surface-plasmon polariton interference lithography

Xiaowei Guo, Jinglei Du, Yongkang Guo, and Jun Yao
Opt. Lett. 31(17) 2613-2615 (2006)

Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer

Xuefeng Yang, Beibei Zeng, Changtao Wang, and Xiangang Luo
Opt. Express 17(24) 21560-21565 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).
  2. M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).
  3. I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
  4. X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
  5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [PubMed]
  6. X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
  7. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
  8. M. Helgert, M. Burkhardt, K. Rudolf, R. Steiner, and R. Brunner, “High-frequent structures generated by interference lithography in the DUV,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2004), DTuC3.
  9. K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7, 875–886 (2006).
  10. C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).
  11. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [PubMed]
  12. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
    [PubMed]
  13. D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005).
    [PubMed]
  14. K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
  15. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).
  16. J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).
  17. H. Liu and J. Teng, “Plasmonic nanolithography: towards next generation nanopatterning,” J. Mol. Eng. Mater. 1, 1250005 (2013).
  18. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
  19. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [PubMed]
  20. X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58, 594201 (2015).
  21. L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv Opt Mater 2017, 1700429 (2017).
  22. X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
    [PubMed]
  23. G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
  25. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046618 (2006).
    [PubMed]
  26. B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
  27. K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
    [PubMed]
  28. H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, “Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons,” Opt. Express 25(17), 20511–20521 (2017).
    [PubMed]
  29. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
    [PubMed]

2017 (1)

2016 (2)

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

2015 (3)

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58, 594201 (2015).

2013 (4)

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[PubMed]

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

H. Liu and J. Teng, “Plasmonic nanolithography: towards next generation nanopatterning,” J. Mol. Eng. Mater. 1, 1250005 (2013).

2011 (1)

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

2010 (2)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).

2009 (1)

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).

2008 (1)

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).

2007 (1)

2006 (4)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7, 875–886 (2006).

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046618 (2006).
[PubMed]

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).

2005 (3)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005).
[PubMed]

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).

2003 (1)

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).

1996 (1)

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).

1981 (1)

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

Braun, P. V.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).

Brueck, S. R. J.

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).

Chen, S. C.

Chen, X.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).

Chen, Y.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).

Chua, J. K.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).

Crespi, V. H.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[PubMed]

Devine, D. J.

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).

Divliansky, I. B.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).

Dong, J.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Dou, F.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

Du, W.

Durant, S.

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Gao, G.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

Gao, P.

H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, “Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons,” Opt. Express 25(17), 20511–20521 (2017).
[PubMed]

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

Gaylord, T. K.

Guo, L. J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

Harned, N.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

Holliday, K. S.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).

Hong, M. H.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).

Kang, G.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Kemp, K.

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7, 875–886 (2006).

Kong, W.

Kumar, A. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Liang, G.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

Liu, H.

H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, “Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons,” Opt. Express 25(17), 20511–20521 (2017).
[PubMed]

H. Liu and J. Teng, “Plasmonic nanolithography: towards next generation nanopatterning,” J. Mol. Eng. Mater. 1, 1250005 (2013).

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

Liu, J.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Liu, K.

Liu, L.

Liu, P.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Liu, Z.

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[PubMed]

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

Luk’yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Luo, X.

H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, “Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons,” Opt. Express 25(17), 20511–20521 (2017).
[PubMed]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58, 594201 (2015).

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).

Luo, Y.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

Ma, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

Mayer, T. S.

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).

Miyake, M.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).

Moharam, M. G.

Murukeshan, V. M.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).

Pendry, J. B.

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).

Pikus, Y.

Pu, M.

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Schilling, J.

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046618 (2006).
[PubMed]

Shao, D. B.

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[PubMed]

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[PubMed]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Teng, J.

H. Liu and J. Teng, “Plasmonic nanolithography: towards next generation nanopatterning,” J. Mol. Eng. Mater. 1, 1250005 (2013).

Tsai, D.

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).

Wagner, C.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).

Wang, C.

H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, “Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons,” Opt. Express 25(17), 20511–20521 (2017).
[PubMed]

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

Wang, Y.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[PubMed]

Wiltzius, P.

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).

Wood, B.

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).

Wurm, S.

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7, 875–886 (2006).

Xie, J.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

Xiong, Y.

Yang, F.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

Yao, N.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

Zaidi, S. H.

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).

Zhang, C.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

Zhang, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[PubMed]

Zhao, C.

H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, and X. Luo, “Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons,” Opt. Express 25(17), 20511–20521 (2017).
[PubMed]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

Zhao, P.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

Zhao, Q.

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

Zhao, X.

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Zhao, Z.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[PubMed]

Zhou, J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

ACS Nano (1)

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[PubMed]

Adv. Funct. Mater. (2)

G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, and X. Luo, “Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography,” Adv. Funct. Mater. 3, 1248–1256 (2015).

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).

Adv. Mater. (1)

M. Miyake, Y. Chen, P. V. Braun, and P. Wiltzius, “Fabrication of Three‐Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition,” Adv. Mater. 21, 3012–3015 (2009).

Appl. Phys. Lett. (5)

I. B. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-period 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106, 093110 (2015).

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).

C. R. Phys. (1)

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7, 875–886 (2006).

J. Mol. Eng. Mater. (1)

H. Liu and J. Teng, “Plasmonic nanolithography: towards next generation nanopatterning,” J. Mol. Eng. Mater. 1, 1250005 (2013).

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).

Laser Photonics Rev. (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4, 568–580 (2010).

Nano Lett. (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[PubMed]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[PubMed]

Nat. Photonics (1)

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics 4, 24–26 (2010).

Opt. Commun. (1)

J. Dong, J. Liu, P. Liu, J. Liu, X. Zhao, G. Kang, J. Xie, and Y. Wang, “Surface plasmon interference lithography with a surface relief metal grating,” Opt. Commun. 288, 122–126 (2013).

Opt. Express (4)

Phys. Rev. B (1)

B. Wood, J. B. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046618 (2006).
[PubMed]

Sci. China Phys. Mech. Astron. (1)

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58, 594201 (2015).

Sci. Rep. (1)

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Other (2)

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography,” Adv Opt Mater 2017, 1700429 (2017).

M. Helgert, M. Burkhardt, K. Rudolf, R. Steiner, and R. Brunner, “High-frequent structures generated by interference lithography in the DUV,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2004), DTuC3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the BPP interference lithography with hyperbolic metamaterial.
Fig. 2
Fig. 2 (a) 3D plots of EFC surface in EMT approximation for metamaterial structure defined in Fig. 1. (b) The OTF window of HMM calculated by RCWA.
Fig. 3
Fig. 3 (a) Light intensity normalized by that of the perpendicular incident light along the horizontal lines at the middle of PR layer for variant incident angles. (b) The image contrast and period values for interference fringes as function of incident angles.
Fig. 4
Fig. 4 (a). Electric field components of |Ex|2, |Ez|2 and |Ex|2 + |Ez|2 distributions for structures with TiO2 grating and (b) with Au grating at the interface between grating layer and HMM. (c) The Fourier spectra of electric field components with |Ex| and |Ez| at that interface. (d) The Fourier spectra of electric field components at the middle PR for the full structures but with different grating layer. (e) Normalized diffraction order transmission for the two structures.
Fig. 5
Fig. 5 (a) Simulated cross section of normalized intensity distribution in the x-z plane in logarithm scale inside the BPP interference structures with TiO2 and (b) Au grating layer, respectively. The electric field intensity of the incident light is set 1V/m. (c) Normalized |E|2 electric field intensity along the horizontal lines at the middle of PR layer for the two structures. (d) The image contrast and normalized intensity in the different depth of PR layer.
Fig. 6
Fig. 6 |Ex|2, |Ez|2, and |Ex|2 + |Ez|2 distributions for the same structures with (a) and (b) without Al reflector, respectively.
Fig. 7
Fig. 7 Schematic diagrams for the processes of structure fabrication and BPP interference lithography
Fig. 8
Fig. 8 (a) and (b) are SEM images of TiO2 and Au gratings before overturn, respectively. (c) AFM measured surface morphology of TiO2 grating and (d) Au grating after strip off processing. (e) and (f) are SEM images of BPP interference fringes on PR layer based on TiO2 and Au gratings, respectively. (g) SEM cross section of BPP structures.
Fig. 9
Fig. 9 Simulated normalized light intensity and contrast of the interference fringes in the middle of PR for variant PR thickness.

Metrics