Abstract

A series of single-crystalline Ln3+-doped YVO4 (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) nanoparticles with mesoporous cell-like nanostructure were prepared via initiating homogeneous precipitation followed by a hydrothermal treatment. All synthetic samples with mesoporous cell-like nanostructure showed a slight variation of crystallite size, ranging from 15 to 17 nm. TEM analysis demonstrated that the diameter of the internal mesoporous structure is about 2∼10 nm. The calculated unit cell volume showed a linear increase trend with increasing the ionic radius of the doped Ln3+ ions. Under UV irradiation, the characteristic emission of rare earth ions can be clearly observed for YVO4:Ln3+ (Ln = Dy, Eu, Sm, Er, Ho) samples. Moreover, the mesoporous cell-like nanostructure has exhibited an enhanced optical property compared with the nanoparticles without mesoporous nanostructure. However, for Ln = Tb and Pr, the characteristic emission of rare earth ions is difficult to observe, even quenching. Furthermore, the bandgap energy Eg showed an obvious red-shift, reducing to 3.67 ± 0.08 eV for YVO4:Eu3+ nanoparticles. The band gap reduction of YVO4:Ln3+ samples possessed the sequence: Eu3+ > Dy3+ > Sm3+ > Er3+ > Ho3+ whereas the band gaps of the YVO4:Ln3+ (Ln = Tb, Pr) samples remained unchanged, almost equal to the YVO4 host. Moreover, due to the tendency to be oxidized to the tetravalent state in Tb3+ and Pr3+ ions, an intervalence charge transfer (IVCT) transition occurs in these two ions, which contributes to quench the luminescence of YVO4:Ln3+ (Ln = Tb, Pr).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multicolor bright Ln3+ (Ln = Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications

Qian Wang, Zhipeng Ci, Ge Zhu, Shuangyu Xin, Wei Zeng, Meidan Que, and Yuhua Wang
Opt. Mater. Express 4(1) 142-154 (2014)

Efficient luminescence enhancement of Gd2O3:Ln3+ (Ln = Yb/Er, Eu) NCs by codoping Zn2+ and Li+ inert ions

Daguang Li, Weiping Qin, Peng Zhang, Lili Wang, Min Lan, and Pengbo Shi
Opt. Mater. Express 7(2) 329-340 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
    [Crossref]
  2. M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
    [Crossref]
  3. N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic and laser properties of resonantly (in-band) pumped Er:YVO4 and Er:GdVO4 crystals: a comparative study,” Opt. Mater. Express 2(8), 1040–1049 (2012).
    [Crossref]
  4. Y. Q. Zhang, S. Xu, X. P. Li, J. S. Zhang, J. S. Sun, H. P. Xia, R. N. Hua, and B. J. Chen, “Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell particles,” Opt. Mater. Express 8(2), 368–384 (2018).
    [Crossref]
  5. S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
    [Crossref]
  6. R. Liu, L. J. Liu, and Y. J. Liang, “Energy transfer and color-tunable luminescence properties of YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) phosphors via molten salt synthesis,” Opt. Mater. Express 8(6), 1686–1694 (2018).
    [Crossref]
  7. W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
    [Crossref]
  8. P. Loiko, J. Boguslawski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybala, K. Mars, A. Mikula, K. Kaszyca, M. Aguilo, F. Diaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8(7), 1723–1732 (2018).
    [Crossref]
  9. S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
    [Crossref]
  10. M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
    [Crossref]
  11. D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
    [Crossref] [PubMed]
  12. A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
    [Crossref] [PubMed]
  13. C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
    [Crossref]
  14. Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
    [Crossref]
  15. N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
    [Crossref] [PubMed]
  16. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
    [Crossref] [PubMed]
  17. R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).
  18. S. Thakur and A. K. Gathania, “Investigation of optical properties of YVO4:Er3+ nano-phosphors at different Er3+ concentrations and calcination temperatures,” J. Mater. Sci. Mater. Electron. 27(2), 1988–1993 (2016).
    [Crossref]
  19. Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
    [Crossref]
  20. R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
    [Crossref]
  21. Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
    [Crossref]
  22. J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
    [Crossref]
  23. M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
    [Crossref]
  24. J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
    [Crossref]
  25. Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
    [Crossref]
  26. G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
    [Crossref]
  27. H. H. Wang, O. Odawara, and H. Wada, “Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol,” Appl. Surf. Sci. 425, 689–695 (2017).
    [Crossref]
  28. H. Q. Liu and J. J. Liu, “Hollow mesoporous Gd2O3:Eu3+ spheres with enhanced luminescence and their drug releasing behavior,” RSC Advances 6(101), 99158–99164 (2016).
    [Crossref]
  29. D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
    [Crossref] [PubMed]
  30. M. L. Zhao, L. P. Li, and G. S. Li, “Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds,” CrystEngComm 18(48), 9209–9222 (2016).
    [Crossref]
  31. R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
    [Crossref]
  32. Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
    [Crossref]
  33. L. Alcaraz, J. Isasi, and C. Díaz-Guerra, “Comparative study of Y0.9Er0.1V1−xPxO4 nanophosphors with x = 0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes,” J. Alloys Compd. 687, 754–764 (2016).
    [Crossref]
  34. S. Thakur and A. K. Gathania, “Synthesis and characterization of YVO4-based phosphor doped with Eu3+ ions for display devices,” J. Electron. Mater. 44(10), 3444–3449 (2015).
    [Crossref]
  35. Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
    [Crossref] [PubMed]
  36. B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
    [Crossref] [PubMed]
  37. C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
    [Crossref]
  38. J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
    [Crossref]
  39. L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
    [Crossref] [PubMed]
  40. K. W. Meert, V. A. Morozov, A. M. Abakumov, J. Hadermann, D. Poelman, and P. F. Smet, “Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor,” Opt. Express 22(S3), A961–A972 (2014).
    [Crossref] [PubMed]
  41. Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
    [Crossref] [PubMed]
  42. Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
    [Crossref]
  43. D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
    [Crossref]
  44. N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
    [Crossref]
  45. S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
    [Crossref]
  46. J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
    [Crossref]
  47. Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
    [Crossref]
  48. A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
    [Crossref] [PubMed]
  49. A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
    [Crossref]
  50. R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem. 51(2), 1180–1186 (2012).
    [Crossref] [PubMed]
  51. S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
    [Crossref]
  52. L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
    [Crossref]
  53. Z. P. Ci, Y. H. Wang, and J. C. Zhang, “A novel yellow emitting phosphor Dy3+,Bi3+ co-doped YVO4 potentially for white light emitting diodes,” Chin. Phys. B 19(5), 057803 (2010).
    [Crossref]
  54. X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
    [Crossref]
  55. G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
    [Crossref]
  56. N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
    [Crossref]
  57. K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
    [Crossref]

2018 (8)

Y. Q. Zhang, S. Xu, X. P. Li, J. S. Zhang, J. S. Sun, H. P. Xia, R. N. Hua, and B. J. Chen, “Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell particles,” Opt. Mater. Express 8(2), 368–384 (2018).
[Crossref]

P. Loiko, J. Boguslawski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybala, K. Mars, A. Mikula, K. Kaszyca, M. Aguilo, F. Diaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8(7), 1723–1732 (2018).
[Crossref]

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

R. Liu, L. J. Liu, and Y. J. Liang, “Energy transfer and color-tunable luminescence properties of YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) phosphors via molten salt synthesis,” Opt. Mater. Express 8(6), 1686–1694 (2018).
[Crossref]

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

2017 (4)

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

H. H. Wang, O. Odawara, and H. Wada, “Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol,” Appl. Surf. Sci. 425, 689–695 (2017).
[Crossref]

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
[Crossref]

2016 (6)

H. Q. Liu and J. J. Liu, “Hollow mesoporous Gd2O3:Eu3+ spheres with enhanced luminescence and their drug releasing behavior,” RSC Advances 6(101), 99158–99164 (2016).
[Crossref]

M. L. Zhao, L. P. Li, and G. S. Li, “Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds,” CrystEngComm 18(48), 9209–9222 (2016).
[Crossref]

S. Thakur and A. K. Gathania, “Investigation of optical properties of YVO4:Er3+ nano-phosphors at different Er3+ concentrations and calcination temperatures,” J. Mater. Sci. Mater. Electron. 27(2), 1988–1993 (2016).
[Crossref]

L. Alcaraz, J. Isasi, and C. Díaz-Guerra, “Comparative study of Y0.9Er0.1V1−xPxO4 nanophosphors with x = 0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes,” J. Alloys Compd. 687, 754–764 (2016).
[Crossref]

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
[Crossref]

K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
[Crossref]

2015 (5)

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

S. Thakur and A. K. Gathania, “Synthesis and characterization of YVO4-based phosphor doped with Eu3+ ions for display devices,” J. Electron. Mater. 44(10), 3444–3449 (2015).
[Crossref]

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

2014 (3)

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

K. W. Meert, V. A. Morozov, A. M. Abakumov, J. Hadermann, D. Poelman, and P. F. Smet, “Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor,” Opt. Express 22(S3), A961–A972 (2014).
[Crossref] [PubMed]

2013 (2)

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

2012 (10)

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, and M. Dubinskii, “Spectroscopic and laser properties of resonantly (in-band) pumped Er:YVO4 and Er:GdVO4 crystals: a comparative study,” Opt. Mater. Express 2(8), 1040–1049 (2012).
[Crossref]

R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem. 51(2), 1180–1186 (2012).
[Crossref] [PubMed]

Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

2011 (5)

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

2010 (7)

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
[Crossref]

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Z. P. Ci, Y. H. Wang, and J. C. Zhang, “A novel yellow emitting phosphor Dy3+,Bi3+ co-doped YVO4 potentially for white light emitting diodes,” Chin. Phys. B 19(5), 057803 (2010).
[Crossref]

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

2009 (6)

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

2008 (1)

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Abakumov, A. M.

Aguilo, M.

Alcaraz, L.

L. Alcaraz, J. Isasi, and C. Díaz-Guerra, “Comparative study of Y0.9Er0.1V1−xPxO4 nanophosphors with x = 0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes,” J. Alloys Compd. 687, 754–764 (2016).
[Crossref]

Almeida, C. R. R.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Antic, Z.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Bartova, B.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Bednarkiewicz, A.

R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem. 51(2), 1180–1186 (2012).
[Crossref] [PubMed]

Bettinelli, M.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Boguslawski, J.

Bomio, M. R. D.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Boutinaud, P.

A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
[Crossref]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Bretenaker, F.

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

Brik, M. G.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Cai, A. J.

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Cavalli, E.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Chai, R. T.

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

Chen, B. J.

Chen, D.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Chen, H.

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

Chen, X. B.

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Chen, Y.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Chen, Y. H.

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

Cheng, Z.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Ci, Z. P.

Z. P. Ci, Y. H. Wang, and J. C. Zhang, “A novel yellow emitting phosphor Dy3+,Bi3+ co-doped YVO4 potentially for white light emitting diodes,” Chin. Phys. B 19(5), 057803 (2010).
[Crossref]

Cui, J.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Cui, T. T.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Dai, Y.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Dhiman, N.

S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
[Crossref]

Diaz, F.

Díaz-Guerra, C.

L. Alcaraz, J. Isasi, and C. Díaz-Guerra, “Comparative study of Y0.9Er0.1V1−xPxO4 nanophosphors with x = 0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes,” J. Alloys Compd. 687, 754–764 (2016).
[Crossref]

Ding, S. W.

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

Ding, Y.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Dong, X. T.

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

Dong, Z.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Dorenbos, P.

A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
[Crossref]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Dramicanin, M. D.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Dubinskii, M.

Fan, B.

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

Feng, J. J.

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

Fromzel, V.

Gadkari, S. C.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Gan, S.

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

Gathania, A. K.

S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
[Crossref]

S. Thakur and A. K. Gathania, “Investigation of optical properties of YVO4:Er3+ nano-phosphors at different Er3+ concentrations and calcination temperatures,” J. Mater. Sci. Mater. Electron. 27(2), 1988–1993 (2016).
[Crossref]

S. Thakur and A. K. Gathania, “Synthesis and characterization of YVO4-based phosphor doped with Eu3+ ions for display devices,” J. Electron. Mater. 44(10), 3444–3449 (2015).
[Crossref]

Goldner, P.

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

Gong, Y. S.

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Griebner, U.

Gu, Z. J.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Guan, X.

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Guan, X. F.

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

Guo, C. X.

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

Hadermann, J.

Hessel, C. M.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Hojamberdiev, M.

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Hong, L. Y.

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Hou, Z.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

Hou, Z. Y.

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

Hu, Z.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Hua, R. N.

Huang, F.

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

Huang, P.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Huang, S.

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

Huang, Y. J.

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

Isasi, J.

L. Alcaraz, J. Isasi, and C. Díaz-Guerra, “Comparative study of Y0.9Er0.1V1−xPxO4 nanophosphors with x = 0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes,” J. Alloys Compd. 687, 754–764 (2016).
[Crossref]

Isobe, T.

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

Jia, G.

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

Jia, G. A.

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

Jin, Q.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Jin, S.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Joos, J. J.

K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
[Crossref]

Kang, Q. W.

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

Kang, X.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

Kang, Z. H.

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Kaszyca, K.

Kifle, E.

Kowalczyk, M.

Krumpel, A. H.

A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
[Crossref]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Leng, Z.

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

Li, C.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

Li, C. X.

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

Li, G.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Li, G. S.

M. L. Zhao, L. P. Li, and G. S. Li, “Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds,” CrystEngComm 18(48), 9209–9222 (2016).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Li, L.

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Li, L. F.

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

Li, L. P.

M. L. Zhao, L. P. Li, and G. S. Li, “Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds,” CrystEngComm 18(48), 9209–9222 (2016).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Li, M. S.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Li, R.

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

Li, X. P.

Li, Y.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
[Crossref]

Li, Y. Z.

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Liang, Y. J.

R. Liu, L. J. Liu, and Y. J. Liang, “Energy transfer and color-tunable luminescence properties of YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) phosphors via molten salt synthesis,” Opt. Mater. Express 8(6), 1686–1694 (2018).
[Crossref]

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Lin, H.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Lin, J.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

Liu, C. P.

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Liu, F.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Liu, G. X.

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

Liu, H. Q.

H. Q. Liu and J. J. Liu, “Hollow mesoporous Gd2O3:Eu3+ spheres with enhanced luminescence and their drug releasing behavior,” RSC Advances 6(101), 99158–99164 (2016).
[Crossref]

Liu, J.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Liu, J. J.

H. Q. Liu and J. J. Liu, “Hollow mesoporous Gd2O3:Eu3+ spheres with enhanced luminescence and their drug releasing behavior,” RSC Advances 6(101), 99158–99164 (2016).
[Crossref]

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Liu, L. J.

Liu, R.

R. Liu, L. J. Liu, and Y. J. Liang, “Energy transfer and color-tunable luminescence properties of YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) phosphors via molten salt synthesis,” Opt. Mater. Express 8(6), 1686–1694 (2018).
[Crossref]

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Liu, S. B.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Liu, S. F.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Liu, X. X.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Liu, Y.

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

Liu, Y. T.

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

Liu, Y. X.

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

Loiko, P.

Longo, E.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Lovisa, L. X.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Lukasiewicz, T.

Luwang, M. N.

M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

Ma, P.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Manzani, D.

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

Mars, K.

Mateos, X.

Meert, K. W.

K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
[Crossref]

K. W. Meert, V. A. Morozov, A. M. Abakumov, J. Hadermann, D. Poelman, and P. F. Smet, “Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor,” Opt. Express 22(S3), A961–A972 (2014).
[Crossref] [PubMed]

Mikula, A.

Ming, H.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Miu, Y. R.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Morozov, V. A.

Motta, F. V.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Nakamura, H.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
[Crossref]

Nie, H. P.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Nie, S. Y.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Niikura, S.

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

Ningthoujam, R. S.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

Odawara, O.

H. H. Wang, O. Odawara, and H. Wada, “Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol,” Appl. Surf. Sci. 425, 689–695 (2017).
[Crossref]

Okram, G. S.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Paboeuf, D.

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

Pan, Z. W.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Parchur, A. K.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Paskocimas, C. A.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Peng, C. O.

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

Petrov, V.

Phaomei, G.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Poelman, D.

K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
[Crossref]

K. W. Meert, V. A. Morozov, A. M. Abakumov, J. Hadermann, D. Poelman, and P. F. Smet, “Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor,” Opt. Express 22(S3), A961–A972 (2014).
[Crossref] [PubMed]

Qi, C. X.

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

Rai, S. B.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Ren, H.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Ren, W. L.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Ribeiro, S. J. L.

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

Ruan, X. G.

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Ryba-Romanowski, W.

Santiago, A. A. G.

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

Sawayama, T.

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

Serres, J. M.

Shan, Z.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Shanta Singh, N.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Shao, G.

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

Shao, J. Y.

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Sharma, A.

S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
[Crossref]

Shen, J.

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Sheng, Y.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Shi, J. L.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Singh, N. S.

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

Singh, R. A.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Singh, S. D.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

Smet, P. F.

K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
[Crossref]

K. W. Meert, V. A. Morozov, A. M. Abakumov, J. Hadermann, D. Poelman, and P. F. Smet, “Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor,” Opt. Express 22(S3), A961–A972 (2014).
[Crossref] [PubMed]

Song, Y. H.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

Sotor, J.

Speghini, A.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Srivastava, K.

M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

Strek, W.

R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem. 51(2), 1180–1186 (2012).
[Crossref] [PubMed]

Su, H. J.

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

Su, Y. G.

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Sun, H. F.

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Sun, J. S.

Sun, L. B.

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

Sun, L. D.

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Sun, X.

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

Takebayashi, Y.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
[Crossref]

Takeshita, S.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
[Crossref]

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

Tang, Z.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Ter-Gabrielyan, N.

Tewari, R.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Thakur, S.

S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
[Crossref]

S. Thakur and A. K. Gathania, “Investigation of optical properties of YVO4:Er3+ nano-phosphors at different Er3+ concentrations and calcination temperatures,” J. Mater. Sci. Mater. Electron. 27(2), 1988–1993 (2016).
[Crossref]

S. Thakur and A. K. Gathania, “Synthesis and characterization of YVO4-based phosphor doped with Eu3+ ions for display devices,” J. Electron. Mater. 44(10), 3444–3449 (2015).
[Crossref]

Tian, G.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Tong, W.

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Tyagi, M.

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

van der Kolk, E.

A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
[Crossref]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Vatsa, R. K.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

Vinu, A.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Wada, H.

H. H. Wang, O. Odawara, and H. Wada, “Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol,” Appl. Surf. Sci. 425, 689–695 (2017).
[Crossref]

Wang, D.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Wang, H.

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Wang, H. H.

H. H. Wang, O. Odawara, and H. Wada, “Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol,” Appl. Surf. Sci. 425, 689–695 (2017).
[Crossref]

Wang, J.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Wang, J. X.

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

Wang, L. Y.

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

Wang, Q.

Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
[Crossref]

Wang, R. X.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Wang, W. L.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Wang, Y.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Wang, Y. H.

Z. P. Ci, Y. H. Wang, and J. C. Zhang, “A novel yellow emitting phosphor Dy3+,Bi3+ co-doped YVO4 potentially for white light emitting diodes,” Chin. Phys. B 19(5), 057803 (2010).
[Crossref]

Wang, Y. S.

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

Wang, Y. X.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Watanabe, T.

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

Wei, L. H.

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Wei, X. T.

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

Whiffen, R. M. K.

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Wiglusz, R. J.

R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem. 51(2), 1180–1186 (2012).
[Crossref] [PubMed]

Wu, X. Y.

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Xia, H. P.

Xing, G. M.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Xiong, H.

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

Xu, J.

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

Xu, S.

Xu, W.

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

Xu, Y. H.

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Xu, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

Xu, Z. H.

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

Yaiphaba, N.

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

Yan, C. H.

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Yan, J. H.

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Yan, L.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Yan, Y. L.

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Yang, A.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Yang, D.

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

Yang, L.

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Yang, L. S.

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Yang, M.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

Yang, P. P.

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

Yang, Y. M.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Ye, X. Y.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Yin, M.

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

Yin, W. Y.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Yoda, S.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
[Crossref]

You, H. P.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

You, W. X.

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Yu, C. C.

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

Yu, M.

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

Yu, R.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Yu, W. S.

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

Yu, X. B.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Yu, Y.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Zeng, L.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

Zhang, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

Zhang, C. C.

Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
[Crossref]

Zhang, C. M.

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

Zhang, G.

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

Zhang, J. C.

Z. P. Ci, Y. H. Wang, and J. C. Zhang, “A novel yellow emitting phosphor Dy3+,Bi3+ co-doped YVO4 potentially for white light emitting diodes,” Chin. Phys. B 19(5), 057803 (2010).
[Crossref]

Zhang, J. S.

Zhang, L. H.

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

Zhang, N.

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

Zhang, R.

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

Zhang, Y. Q.

Zhao, B.

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

Zhao, H.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Zhao, M.

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

Zhao, M. L.

M. L. Zhao, L. P. Li, and G. S. Li, “Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds,” CrystEngComm 18(48), 9209–9222 (2016).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Zhao, W.

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

Zhao, Y. L.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Zheng, J.

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Zheng, K. Y.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Zheng, Y.

Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
[Crossref]

Zheng, Y. H.

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

Zhou, J. C.

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

Zhou, L. J.

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Zhou, X.

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Zhou, X. Q.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Zhu, J. D.

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Zhu, Y.

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

Zou, H. F.

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Zybala, R.

Adv. Funct. Mater. (1)

J. Shen, L. D. Sun, J. D. Zhu, L. H. Wei, H. F. Sun, and C. H. Yan, “Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes,” Adv. Funct. Mater. 20(21), 3708–3714 (2010).
[Crossref]

Adv. Mater. (1)

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, and D. Wang, “Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells,” Adv. Mater. 26(6), 905–909 (2014).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

H. H. Wang, O. Odawara, and H. Wada, “Morphology and optical properties of YVO4:Eu3+ nanoparticles fabricated by laser ablation in ethanol,” Appl. Surf. Sci. 425, 689–695 (2017).
[Crossref]

Biomaterials (1)

D. Yang, X. Kang, P. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref] [PubMed]

Chem. J. Chin. Univ. (1)

R. Liu, Y. J. Liang, X. Y. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and luminescent properties of YVO4:Sm3+ red phosphor by molten salt synthesis method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Chem. Lett. (1)

Y. G. Su, G. S. Li, X. B. Chen, J. J. Liu, and L. P. Li, “Hydrothermal synthesis of GdVO4:Ho3+ nanorods with a novel white-light emission,” Chem. Lett. 37(7), 762–763 (2008).
[Crossref]

Chem. Mater. (1)

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(23), 8466–8469 (2016).
[Crossref]

Chem. Phys. Lett. (1)

N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa, “Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln = Dy, Eu) nanoparticles: concentration and annealing effects,” Chem. Phys. Lett. 480(4–6), 237–242 (2009).
[Crossref]

Chin. Phys. B (1)

Z. P. Ci, Y. H. Wang, and J. C. Zhang, “A novel yellow emitting phosphor Dy3+,Bi3+ co-doped YVO4 potentially for white light emitting diodes,” Chin. Phys. B 19(5), 057803 (2010).
[Crossref]

Cryst. Growth Des. (2)

C. C. Yu, M. Yu, C. X. Li, C. M. Zhang, P. P. Yang, and J. Lin, “Spindle-like lanthanide orthovanadate nanoparticles: facile synthesis by ultrasonic irradiation, characterization, and luminescent properties,” Cryst. Growth Des. 9(2), 783–791 (2009).
[Crossref]

M. L. Zhao, G. S. Li, L. P. Li, L. S. Yang, and J. Zheng, “Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions,” Cryst. Growth Des. 12(8), 3983–3991 (2012).
[Crossref]

CrystEngComm (6)

Z. H. Xu, C. X. Li, Z. Y. Hou, C. O. Peng, and J. Lin, “Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process,” CrystEngComm 13(2), 474–482 (2011).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, and L. S. Yang, “Fabrication of assembled-spheres YVO4:(Ln3+, Bi3+) towards optically tunable emission,” CrystEngComm 14(6), 2062–2070 (2012).
[Crossref]

G. Jia, C. M. Zhang, S. W. Ding, L. Y. Wang, L. F. Li, and H. P. You, “Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4:Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method,” CrystEngComm 14(2), 573–578 (2012).
[Crossref]

M. L. Zhao, L. P. Li, and G. S. Li, “Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds,” CrystEngComm 18(48), 9209–9222 (2016).
[Crossref]

L. S. Yang, G. S. Li, M. L. Zhao, J. Zheng, X. F. Guan, and L. P. Li, “Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study,” CrystEngComm 14(9), 3227–3235 (2012).
[Crossref]

M. L. Zhao, G. S. Li, J. Zheng, L. P. Li, H. Wang, and L. S. Yang, “Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: room-temperature reaction followed by a heat treatment,” CrystEngComm 13(20), 6251–6257 (2011).
[Crossref]

Dalton Trans. (3)

B. Zhao, W. Zhao, G. Shao, B. Fan, and R. Zhang, “Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids,” Dalton Trans. 44(36), 15984–15993 (2015).
[Crossref] [PubMed]

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln (Ln = Dy, Eu, Sm, Tm) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, “Luminescence properties of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40(29), 7595–7601 (2011).
[Crossref] [PubMed]

Inorg. Chem. (2)

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[Crossref] [PubMed]

R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem. 51(2), 1180–1186 (2012).
[Crossref] [PubMed]

J. Alloys Compd. (2)

Y. Liu, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies,” J. Alloys Compd. 653, 126–134 (2015).
[Crossref]

L. Alcaraz, J. Isasi, and C. Díaz-Guerra, “Comparative study of Y0.9Er0.1V1−xPxO4 nanophosphors with x = 0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes,” J. Alloys Compd. 687, 754–764 (2016).
[Crossref]

J. Appl. Phys. (2)

N. S. Singh, R. S. Ningthoujam, N. Yaiphaba, S. D. Singh, and R. K. Vatsa, “Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect,” J. Appl. Phys. 105(6), 064303 (2009).
[Crossref]

X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, and W. Xu, “Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[Crossref]

J. Electron. Mater. (2)

S. Thakur, N. Dhiman, A. Sharma, and A. K. Gathania, “Effect of photonic structure on optical properties of YVO4:Eu3+ phosphor,” J. Electron. Mater. 46(4), 2085–2089 (2017).
[Crossref]

S. Thakur and A. K. Gathania, “Synthesis and characterization of YVO4-based phosphor doped with Eu3+ ions for display devices,” J. Electron. Mater. 44(10), 3444–3449 (2015).
[Crossref]

J. Lumin. (3)

R. T. Chai, Y. T. Liu, G. Zhang, J. J. Feng, and Q. W. Kang, “In situ preparation and luminescence properties of CaWO4 and CaWO4:Ln (Ln = Eu3+, Tb3+) nanoparticles and transparent CaWO4:Ln/PMMA nanocomposites,” J. Lumin. 202, 65–70 (2018).
[Crossref]

A. H. Krumpel, P. Boutinaud, E. van der Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:Ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide),” J. Lumin. 130(8), 1357–1365 (2010).
[Crossref]

K. W. Meert, J. J. Joos, D. Poelman, and P. F. Smet, “Investigation of the quenching mechanisms of Tb3+ doped scheelites,” J. Lumin. 173, 263–273 (2016).
[Crossref]

J. Mater. Chem. (2)

M. N. Luwang, R. S. Ningthoujam, K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln = Eu, Dy, Tm) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

W. Y. Yin, L. J. Zhou, Z. J. Gu, G. Tian, S. Jin, L. Yan, X. X. Liu, G. M. Xing, W. L. Ren, F. Liu, Z. W. Pan, and Y. L. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. C. Zhou, F. Huang, J. Xu, H. Chen, and Y. S. Wang, “Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3023–3028 (2015).
[Crossref]

J. Mater. Sci. (1)

Y. Ding, J. Liu, Y. Zhu, S. Y. Nie, W. L. Wang, J. L. Shi, Y. R. Miu, and X. B. Yu, “Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes,” J. Mater. Sci. 53(7), 4861–4873 (2018).
[Crossref]

J. Mater. Sci. Mater. Electron. (2)

S. Thakur and A. K. Gathania, “Investigation of optical properties of YVO4:Er3+ nano-phosphors at different Er3+ concentrations and calcination temperatures,” J. Mater. Sci. Mater. Electron. 27(2), 1988–1993 (2016).
[Crossref]

C. R. R. Almeida, L. X. Lovisa, A. A. G. Santiago, M. S. Li, E. Longo, C. A. Paskocimas, F. V. Motta, and M. R. D. Bomio, “One-step synthesis of CaMoO4:Eu3+ nanospheres by ultrasonic spray pyrolysis,” J. Mater. Sci. Mater. Electron. 28(22), 16867–16879 (2017).
[Crossref]

J. Phys. Chem. C (1)

S. F. Liu, H. Ming, J. Cui, S. B. Liu, W. X. You, X. Y. Ye, Y. M. Yang, H. P. Nie, and R. X. Wang, “Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

J. Phys. Condens. Matter (1)

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21(11), 115503 (2009).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

Y. Li, Y. Zheng, Q. Wang, and C. C. Zhang, “Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents,” Mater. Chem. Phys. 135(2), 451–456 (2012).
[Crossref]

Mater. Res. Bull. (1)

Y. H. Zheng, X. Sun, H. J. Su, L. B. Sun, and C. X. Qi, “Monodisperse YVO4:Eu3+ nanospindles: rapid converted growth and luminescence properties,” Mater. Res. Bull. 105, 149–153 (2018).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. Y. Shao, C. P. Liu, X. Zhou, L. Y. Hong, J. H. Yan, and Z. H. Kang, “Luminescence properties of YVO4:Ln3+ (Ln = Dy, Eu, Tm) for white LED by hydrothermal method,” Mater. Sci. Semicond. Process. 84, 58–63 (2018).
[Crossref]

Nanotechnology (1)

L. Li, M. Zhao, W. Tong, X. Guan, G. Li, and L. Yang, “Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence,” Nanotechnology 21(19), 195601 (2010).
[Crossref] [PubMed]

New J. Chem. (2)

Y. X. Liu, G. X. Liu, J. X. Wang, X. T. Dong, and W. S. Yu, “Reddish-orange-emitting and paramagnetic properties of GdVO4:Sm3+/Eu3+ multifunctional nanomaterials,” New J. Chem. 39(11), 8282–8290 (2015).
[Crossref] [PubMed]

Y. X. Wang, Y. H. Song, Y. Li, T. T. Cui, X. Q. Zhou, Y. Sheng, K. Y. Zheng, H. P. You, and H. F. Zou, “Morphology control and tunable color of LuVO4:Ln3+ (Ln = Tm, Er, Sm, Eu) nano/micro-structures dagger,” New J. Chem. 41(2), 709–716 (2017).
[Crossref]

Opt. Express (1)

Opt. Mater. (4)

S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route,” Opt. Mater. 33(3), 323–326 (2011).
[Crossref]

G. A. Jia, Y. H. Song, M. Yang, Y. J. Huang, L. H. Zhang, and H. P. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. 31(6), 1032–1037 (2009).
[Crossref]

D. Manzani, D. Paboeuf, S. J. L. Ribeiro, P. Goldner, and F. Bretenaker, “Orange emission in Pr3+-doped fluoroindate glasses,” Opt. Mater. 35(3), 383–386 (2013).
[Crossref]

R. M. K. Whiffen, Z. Antic, A. Speghini, M. G. Brik, B. Bartova, M. Bettinelli, and M. D. Dramicanin, “Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions,” Opt. Mater. 36(6), 1083–1091 (2014).
[Crossref]

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (1)

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, A. Yang, and Y. Wang, “Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light,” Phys. Chem. Chem. Phys. 12(28), 7775–7778 (2010).
[Crossref] [PubMed]

RSC Advances (1)

H. Q. Liu and J. J. Liu, “Hollow mesoporous Gd2O3:Eu3+ spheres with enhanced luminescence and their drug releasing behavior,” RSC Advances 6(101), 99158–99164 (2016).
[Crossref]

Solid State Sci. (1)

J. Wang, Y. L. Yan, M. Hojamberdiev, X. G. Ruan, A. J. Cai, and Y. H. Xu, “A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters,” Solid State Sci. 14(8), 1018–1022 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 XRD patterns of YVO4:Ln3+ samples with mesoporous cell-like nanostructure:(a) Ln = Y, Pr, Sm, Eu, and (b) Ln = Tb, Dy, Ho, Er. Vertical bars at the bottom denote the standard data for a tetrahedral zircon structure of bulk YVO4 (JCPDS No. 17-0341). Symbols “*” denote the internal standard of Ni.
Fig. 2
Fig. 2 Rietveld data fit on powder X-ray diffraction data for YVO4:Eu3+ nanocrystals with mesoporous cell-like nanostructure. Simulated and experimental data and their difference pattern are also shown. Symbols “*” denote the internal standard of Ni.
Fig. 3
Fig. 3 Lattice parameters: a, c, c/a, and V of single-crystalline YVO4:Ln3+ nanocrystals with mesoporous cell-like nanostructure are as a function of Ln3+ ionic radius.
Fig. 4
Fig. 4 YVO4:Eu3+ nanocrystals with mesoporous cell-like nanostructure: (a) Surveyed TEM image, (b) Partial enlarged drawing of TEM image, (c) Partial enlarged HRTEM image of single nanoparticle, and (d) SAED image.
Fig. 5
Fig. 5 Optical excitation (left) and emission spectra (right, λex = 310 nm) of single-crystalline YVO4:Ln3+ (Ln = Dy, Eu, Sm, Er) with mesoporous cell-like nanostructure. Insets are photographs of the corresponding samples under UV lamp irradiation at 254 nm.
Fig. 6
Fig. 6 Optical excitation (left) and emission spectra (right, λex = 310 nm) of single-crystalline YVO4:Ln3+ (Ln = Y, Tb, Pr, Ho) with mesoporous cell-like nanostructure. The intensity of excitation and emission spectra of the samples were both enlarged 10 times.
Fig. 7
Fig. 7 Optical decay curve of Ln3+ in single-crystalline YVO4:Ln3+ (Ln = Dy, Eu, Sm, Er) with mesoporous cell-like nanostructure.
Fig. 8
Fig. 8 Absorbance spectra of single-crystalline YVO4:Ln3+ with mesoporous cell-like nanostructure: (a) Ln = Dy, Eu, Sm, Er, and (b) Ln = Y, Tb, Pr, Ho.
Fig. 9
Fig. 9 Energy dependence of (αhν)2 for single-crystalline YVO4:Ln3+ (Ln = Y, Eu, Tb) with mesoporous cell-like nanostructure.
Fig. 10
Fig. 10 The SEM images of the un-doped YVO4 and YVO4:Eu3+ samples.

Tables (3)

Tables Icon

Table 1 Band gap (Eg) of single-crystalline YVO4:Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) and un-doped YVO4 host with mesoporous cell-like nanostructure.

Tables Icon

Table 2 The fit parameters are by the full-profile Rietveld refinement for YVO4:Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) and un-doped YVO4 host with mesoporous cell-like nanostructure.

Tables Icon

Table 3 The lattice parameters and crystallite size of YVO4:Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) and un-doped YVO4 host with mesoporous cell-like nanostructure.

Metrics