Abstract

This theoretical work illustrates the robustness of a highly-symmetrical cross nanoantenna in manipulating the fluorescence emission characteristics of a randomly oriented fluorophore. Owing to the highly symmetrical feature, the cross nanoantenna is able to generate stable excitation rates and quantum yields over all the emitter orientations. As a result, the cross structure produces a consistent fluorescence enhancement factor for any arbitrarily oriented fluorophore, which is more than twice that of a dimer counterpart. In addition, the cross nanoantenna preserves the original orientation information of the emitter at the far field, which is generally unachievable with a dimer configuration.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Collective localized surface plasmons for high performance fluorescence biosensing

Martin Bauch and Jakub Dostalek
Opt. Express 21(17) 20470-20483 (2013)

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

Purcell effect of nanoshell dimer on single molecule’s fluorescence

Jiunn-Woei Liaw, Jeng-Hong Chen, Chi-San Chen, and Mao-Kuen Kuo
Opt. Express 17(16) 13532-13540 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Ringer, B. A. Howell, and D. E. Kizer, “Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA,” Anal. Biochem. 103(2), 337–342 (1980).
    [Crossref] [PubMed]
  2. Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
    [Crossref] [PubMed]
  3. C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
    [Crossref] [PubMed]
  4. H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).
  5. K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
    [Crossref] [PubMed]
  6. A. Blázquez-Castro and J. C. Stockert, Fluorescence Microscopy in Life Sciences (Bentham Science Publishers, 2017).
  7. S. Harekrushna, “Fluorescent labeling techniques in biomolecules: a flashback,” Rsc Adv. 2(18), 7017–7029 (2012).
    [Crossref]
  8. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
    [Crossref]
  9. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806–3808 (1996).
    [Crossref]
  10. J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
    [Crossref]
  11. C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
    [Crossref] [PubMed]
  12. V. K. Baliyan, V. Kumar, J. Kim, and S.-W. Kang, “Polarized photoluminescence of the polymer networks obtained by in situ photopolymerization of fluorescent monomer in a nematic liquid crystal,” Opt. Mater. Express 6(9), 2956–2965 (2016).
    [Crossref]
  13. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26(3), 557–573 (1979).
    [Crossref] [PubMed]
  14. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  15. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  16. L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  17. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
    [Crossref]
  18. A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
    [Crossref] [PubMed]
  19. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  20. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
    [Crossref]
  21. O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).
  22. M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
    [Crossref]
  23. M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
    [Crossref] [PubMed]
  24. Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
    [Crossref] [PubMed]
  25. A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  26. R. Ghosh Chaudhuri and S. Paria, “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev. 112(4), 2373–2433 (2012).
    [Crossref] [PubMed]
  27. L. Huang, S. Wu, Y. L. Wang, X. J. Ma, H. M. Deng, S. M. Wang, Y. Lu, C. Q. Li, and T. Li, “Tunable unidirectional surface plasmon polariton launcher utilizing a graphene-based single asymmetric nanoantenna,” Opt. Mater. Express 7(2), 569–576 (2017).
    [Crossref]
  28. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  29. J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
    [Crossref] [PubMed]
  30. N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
    [Crossref] [PubMed]
  31. H. Abudayyeh and R. Rapaport, “Quantum emitters coupled to circular nanoantennas for high brightness quantum light sources,” Quantum Science and Technology 2(3), 034004 (2017).
    [Crossref]
  32. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  33. D. X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photonic Tech. Lett. 18(2), 343–345 (2006).
    [Crossref]
  34. Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
    [Crossref] [PubMed]
  35. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  36. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
    [Crossref] [PubMed]
  37. J. L. Stokes, J. R. Pugh, M. Lopezgarcia, M. J. Cryan, N. Ahmad, Y. Yu, and Z. H. Yuan, “Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications,” J. Opt. Soc. Am. B 31(2), 302–310 (2014).
    [Crossref]
  38. Q. Zhang, P. Hu, and C. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
    [Crossref]
  39. S. Alkaraki, Y. Gao, C. Parini, M. Navarro-Cia, and M. Bernete, “Linearly and circularly polarised Bull’s eye antenna,” Antennas & Propagation Conference. IEEE, 1–3 (2017).
  40. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  41. J. Enderlein and M. Böhmer, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20(3), 554–559 (2003).
    [Crossref]
  42. T. Lafont, N. Totaro, and A. Le Bot, “Coupling strength assumption in statistical energy analysis,” Proc. Math. Phys. Eng. Sci. 473(2200), 20160927 (2017).
    [Crossref] [PubMed]
  43. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref] [PubMed]
  44. J. W. Ha, K. Marchuk, and N. Fang, “Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy,” Nano Lett. 12(8), 4282–4288 (2012).
    [Crossref] [PubMed]
  45. COMSOL Application Gallery, “Scatter on substrate,” https://www.comsol.com/model/scatterer-on-substrate-14699 .
  46. M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
    [Crossref]
  47. Nikon Corporation, “NIKON Zemax catalog 2017-11,” https://www.nikon.com/products/glass/lineup/materials/optical/ .
  48. Thermo Fisher Scientific, “Alexa Fluor 680 dye,” https://www.thermofisher.com/cn/zh/home/life-science/cell-analysis/fluorophores/alexa-fluor-680.html .
  49. E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
    [Crossref] [PubMed]
  50. A. Alegria-Schaffer, A. Lodge, and K. Vattem, “Performing and optimizing Western blots with an emphasis on chemiluminescent detection,” Methods Enzymol. 463, 573–599 (2009).
    [Crossref] [PubMed]
  51. N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
    [Crossref] [PubMed]
  52. S. L. And and M. A. Elsayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (2000).
  53. N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
    [Crossref] [PubMed]
  54. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  55. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
    [Crossref] [PubMed]
  56. J. W. Liaw, “The quantum yield of a metallic nanoantenna,” Appl. Phys., A Mater. Sci. Process. 89(2), 357–362 (2007).
    [Crossref]
  57. J. M. Steele, N. K. Grady, P. Nordlander, and N. J. Halas, “Plasmon hybridization in complex nanostructures.” Surface Plasmon Nanophotonics 183–196 (Springer, Dordrecht, 2007).
  58. D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
    [Crossref]

2018 (1)

Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
[Crossref] [PubMed]

2017 (6)

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

H. Abudayyeh and R. Rapaport, “Quantum emitters coupled to circular nanoantennas for high brightness quantum light sources,” Quantum Science and Technology 2(3), 034004 (2017).
[Crossref]

A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).

T. Lafont, N. Totaro, and A. Le Bot, “Coupling strength assumption in statistical energy analysis,” Proc. Math. Phys. Eng. Sci. 473(2200), 20160927 (2017).
[Crossref] [PubMed]

L. Huang, S. Wu, Y. L. Wang, X. J. Ma, H. M. Deng, S. M. Wang, Y. Lu, C. Q. Li, and T. Li, “Tunable unidirectional surface plasmon polariton launcher utilizing a graphene-based single asymmetric nanoantenna,” Opt. Mater. Express 7(2), 569–576 (2017).
[Crossref]

2016 (3)

V. K. Baliyan, V. Kumar, J. Kim, and S.-W. Kang, “Polarized photoluminescence of the polymer networks obtained by in situ photopolymerization of fluorescent monomer in a nematic liquid crystal,” Opt. Mater. Express 6(9), 2956–2965 (2016).
[Crossref]

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

2015 (2)

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Q. Zhang, P. Hu, and C. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

2014 (2)

2012 (4)

S. Harekrushna, “Fluorescent labeling techniques in biomolecules: a flashback,” Rsc Adv. 2(18), 7017–7029 (2012).
[Crossref]

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

R. Ghosh Chaudhuri and S. Paria, “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev. 112(4), 2373–2433 (2012).
[Crossref] [PubMed]

J. W. Ha, K. Marchuk, and N. Fang, “Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy,” Nano Lett. 12(8), 4282–4288 (2012).
[Crossref] [PubMed]

2011 (2)

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
[Crossref]

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2010 (3)

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

2009 (4)

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

A. Alegria-Schaffer, A. Lodge, and K. Vattem, “Performing and optimizing Western blots with an emphasis on chemiluminescent detection,” Methods Enzymol. 463, 573–599 (2009).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

2008 (4)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).

2007 (5)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

J. W. Liaw, “The quantum yield of a metallic nanoantenna,” Appl. Phys., A Mater. Sci. Process. 89(2), 357–362 (2007).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
[Crossref] [PubMed]

2006 (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

D. X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photonic Tech. Lett. 18(2), 343–345 (2006).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2004 (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
[Crossref]

2003 (2)

J. Enderlein and M. Böhmer, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20(3), 554–559 (2003).
[Crossref]

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2001 (2)

K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
[Crossref] [PubMed]

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

2000 (1)

S. L. And and M. A. Elsayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (2000).

1998 (1)

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

1996 (1)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806–3808 (1996).
[Crossref]

1988 (1)

Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
[Crossref] [PubMed]

1980 (1)

D. P. Ringer, B. A. Howell, and D. E. Kizer, “Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA,” Anal. Biochem. 103(2), 337–342 (1980).
[Crossref] [PubMed]

1979 (1)

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26(3), 557–573 (1979).
[Crossref] [PubMed]

Abbas, H. K.

H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).

Abudayyeh, H.

H. Abudayyeh and R. Rapaport, “Quantum emitters coupled to circular nanoantennas for high brightness quantum light sources,” Quantum Science and Technology 2(3), 034004 (2017).
[Crossref]

Ahmad, N.

Aizpurua, J.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Alegria-Schaffer, A.

A. Alegria-Schaffer, A. Lodge, and K. Vattem, “Performing and optimizing Western blots with an emphasis on chemiluminescent detection,” Methods Enzymol. 463, 573–599 (2009).
[Crossref] [PubMed]

And, S. L.

S. L. And and M. A. Elsayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (2000).

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Appell, M.

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

Appenroth, K. J.

K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
[Crossref] [PubMed]

Arrio, M. A.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Avlasevich, Y.

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Axelrod, D.

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26(3), 557–573 (1979).
[Crossref] [PubMed]

Baliyan, V. K.

Baranov, D. G.

O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Böhmer, M.

Cadorette, J.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Cai, L.

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

Catucci, L.

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

Cauchon, N.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Cerjan, B.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Cezar, J. C.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Cheben, P.

D. X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photonic Tech. Lett. 18(2), 343–345 (2006).
[Crossref]

Cornia, A.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Corrie, J. E.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

Cryan, M. J.

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Danieli, C.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Dehaen, A. W.

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

Deng, H. M.

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Dong, Z. C.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Doong, J. Y.

Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
[Crossref] [PubMed]

Duò, L.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Eisenberg, H. S.

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

Elsayed, M. A.

S. L. And and M. A. Elsayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (2000).

Enderlein, J.

Esteban, R.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Everitt, H. O.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Fan, S.

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fang, N.

J. W. Ha, K. Marchuk, and N. Fang, “Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy,” Nano Lett. 12(8), 4282–4288 (2012).
[Crossref] [PubMed]

Finazzi, M.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Forkey, J. N.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

Fullerton, E. E.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
[Crossref]

Gebear-Eigzabher, B.

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Gerken, U.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Ghosh Chaudhuri, R.

R. Ghosh Chaudhuri and S. Paria, “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev. 112(4), 2373–2433 (2012).
[Crossref] [PubMed]

Giannini, V.

Goldman, Y. E.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

Gómez Rivas, J.

Gonçalves, M. R.

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
[Crossref]

Grodzinsky, A. J.

Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
[Crossref] [PubMed]

Ha, J. W.

J. W. Ha, K. Marchuk, and N. Fang, “Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy,” Nano Lett. 12(8), 4282–4288 (2012).
[Crossref] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Halas, N. J.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Harats, M. G.

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

Harekrushna, S.

S. Harekrushna, “Fluorescent labeling techniques in biomolecules: a flashback,” Rsc Adv. 2(18), 7017–7029 (2012).
[Crossref]

Hecht, B.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Hlaing, M.

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Hofkens, J.

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Horn, B. W.

H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).

Hou, J. G.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Howell, B. A.

D. P. Ringer, B. A. Howell, and D. E. Kizer, “Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA,” Anal. Biochem. 103(2), 337–342 (1980).
[Crossref] [PubMed]

Hu, P.

Q. Zhang, P. Hu, and C. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Huang, L.

Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Hulst, N. F. V.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Hulst, N. V.

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Hunting, D. J.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Istrati, D.

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

Janz, S.

D. X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photonic Tech. Lett. 18(2), 343–345 (2006).
[Crossref]

Jelezko, F.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Jiang, L. J.

Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
[Crossref] [PubMed]

Joly, L.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Kan, J.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
[Crossref]

Kang, S.-W.

Kim, J.

Kim, Y. J.

Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
[Crossref] [PubMed]

King, N. S.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Kinkhabwala, A. A.

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kizer, D. E.

D. P. Ringer, B. A. Howell, and D. E. Kizer, “Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA,” Anal. Biochem. 103(2), 337–342 (1980).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Krasnok, A. E.

O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Kumar, V.

Lafont, T.

T. Lafont, N. Totaro, and A. Le Bot, “Coupling strength assumption in statistical energy analysis,” Proc. Math. Phys. Eng. Sci. 473(2200), 20160927 (2017).
[Crossref] [PubMed]

Lai, C. Y.

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Langlois, R.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Le Bot, A.

T. Lafont, N. Totaro, and A. Le Bot, “Coupling strength assumption in statistical energy analysis,” Proc. Math. Phys. Eng. Sci. 473(2200), 20160927 (2017).
[Crossref] [PubMed]

Lecomte, R.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Li, C. Q.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, T.

Liaw, J. W.

J. W. Liaw, “The quantum yield of a metallic nanoantenna,” Appl. Phys., A Mater. Sci. Process. 89(2), 357–362 (2007).
[Crossref]

Lieb, M. A.

Lippolis, V.

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

Liu, C.

Q. Zhang, P. Hu, and C. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Liu, L.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Liu, Z.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
[Crossref]

Livneh, N.

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

Lodge, A.

A. Alegria-Schaffer, A. Lodge, and K. Vattem, “Performing and optimizing Western blots with an emphasis on chemiluminescent detection,” Methods Enzymol. 463, 573–599 (2009).
[Crossref] [PubMed]

Lopezgarcia, M.

Lu, D.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
[Crossref]

Lu, Y.

Lubeck, E.

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

Luo, Y.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Ma, X. J.

Mannini, M.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Maragos, C. M.

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

Marcano, A.

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Marchuk, K.

J. W. Ha, K. Marchuk, and N. Fang, “Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy,” Nano Lett. 12(8), 4282–4288 (2012).
[Crossref] [PubMed]

Meng, Q. S.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Moerner, W. E.

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mullen, K.

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Muskens, O. L.

Nordlander, P.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Novotny, L.

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21(6), 1210–1215 (2004).
[Crossref]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806–3808 (1996).
[Crossref]

Otero, E.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Paria, S.

R. Ghosh Chaudhuri and S. Paria, “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev. 112(4), 2373–2433 (2012).
[Crossref] [PubMed]

Pascale, M.

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

Pavan, R. A.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Pineider, F.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Pugh, J. R.

Qin, Y.

Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Quinlan, M. E.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

Radu, D.

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Rapaport, R.

H. Abudayyeh and R. Rapaport, “Quantum emitters coupled to circular nanoantennas for high brightness quantum light sources,” Quantum Science and Technology 2(3), 034004 (2017).
[Crossref]

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

Ringer, D. P.

D. P. Ringer, B. A. Howell, and D. E. Kizer, “Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA,” Anal. Biochem. 103(2), 337–342 (1980).
[Crossref] [PubMed]

Roa, A.

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Rogl, H.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Rousseau, J. A.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Sah, R. L.

Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
[Crossref] [PubMed]

Sainctavit, P.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Savelev, R. S.

O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).

Schryver, F. C. D.

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

Schubert, A.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Schuler, S.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Sergaeva, O. N.

O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).

Sessoli, R.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Sha, W. E. I.

Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
[Crossref] [PubMed]

Shaw, M. A.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

Shier, W. T.

H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).

Shukla, R.

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Sorace, L.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Srivastava, A.

K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
[Crossref] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Stöckel, J.

K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
[Crossref] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Stokes, J. L.

Strasser, R. J.

K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Tessier, G.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Tietz, C.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Totaro, N.

T. Lafont, N. Totaro, and A. Le Bot, “Coupling strength assumption in statistical energy analysis,” Proc. Math. Phys. Eng. Sci. 473(2200), 20160927 (2017).
[Crossref] [PubMed]

Totti, F.

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

van Lier, J. E.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Vattem, K.

A. Alegria-Schaffer, A. Lodge, and K. Vattem, “Performing and optimizing Western blots with an emphasis on chemiluminescent detection,” Methods Enzymol. 463, 573–599 (2009).
[Crossref] [PubMed]

Verheijen, W.

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

Visconti, A.

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Wang, S. M.

Wang, Y. L.

Weaver, M. A.

H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).

Wrachtrup, J.

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

Wu, S.

Xiong, X. Y. Z.

Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
[Crossref] [PubMed]

Xu, D. X.

D. X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photonic Tech. Lett. 18(2), 343–345 (2006).
[Crossref]

Yang, B.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Yang, J. L.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Yang, X.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

Yu, Y.

Yu, Y. J.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Yu, Z.

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, Z. H.

Zavislan, J. M.

Zeisler, S. K.

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Zhang, L.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, P. Hu, and C. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

ACS Nano (1)

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Anal. Biochem. (2)

D. P. Ringer, B. A. Howell, and D. E. Kizer, “Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA,” Anal. Biochem. 103(2), 337–342 (1980).
[Crossref] [PubMed]

Y. J. Kim, R. L. Sah, J. Y. Doong, and A. J. Grodzinsky, “Fluorometric assay of DNA in cartilage explants using Hoechst 33258,” Anal. Biochem. 174(1), 168–176 (1988).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806–3808 (1996).
[Crossref]

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett. 98(24), 243114 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. W. Liaw, “The quantum yield of a metallic nanoantenna,” Appl. Phys., A Mater. Sci. Process. 89(2), 357–362 (2007).
[Crossref]

Biophys. J. (2)

C. Tietz, F. Jelezko, U. Gerken, S. Schuler, A. Schubert, H. Rogl, and J. Wrachtrup, “Single molecule spectroscopy on the light-harvesting complex II of higher plants,” Biophys. J. 81(1), 556–562 (2001).
[Crossref] [PubMed]

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26(3), 557–573 (1979).
[Crossref] [PubMed]

Chem. Rev. (1)

R. Ghosh Chaudhuri and S. Paria, “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev. 112(4), 2373–2433 (2012).
[Crossref] [PubMed]

Environ. Pollut. (1)

K. J. Appenroth, J. Stöckel, A. Srivastava, and R. J. Strasser, “Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements,” Environ. Pollut. 115(1), 49–64 (2001).
[Crossref] [PubMed]

Eur. J. Nucl. Med. Mol. Imaging (1)

N. Cauchon, R. Langlois, J. A. Rousseau, G. Tessier, J. Cadorette, R. Lecomte, D. J. Hunting, R. A. Pavan, S. K. Zeisler, and J. E. van Lier, “PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V,” Eur. J. Nucl. Med. Mol. Imaging 34(2), 247–258 (2007).
[Crossref] [PubMed]

Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. (1)

C. M. Maragos, M. Appell, V. Lippolis, A. Visconti, L. Catucci, and M. Pascale, “Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins,” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(2), 164–171 (2008).
[Crossref] [PubMed]

IEEE Photonic Tech. Lett. (1)

D. X. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photonic Tech. Lett. 18(2), 343–345 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

S. L. And and M. A. Elsayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (2000).

J. Phys. Condens. Matter (1)

Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, “Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna,” J. Phys. Condens. Matter 30(14), 144007 (2018).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

O. N. Sergaeva, R. S. Savelev, D. G. Baranov, and A. E. Krasnok, “Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission,” J. Phys. Conf. Ser. 929(1), 012066 (2017).

J. Phys. D Appl. Phys. (1)

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D Appl. Phys. 47(21), 213001 (2014).
[Crossref]

Macromolecules (1)

J. Hofkens, W. Verheijen, R. Shukla, A. W. Dehaen, and F. C. D. Schryver, “Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film,” Macromolecules 31(14), 4493–4497 (1998).
[Crossref]

Methods Enzymol. (1)

A. Alegria-Schaffer, A. Lodge, and K. Vattem, “Performing and optimizing Western blots with an emphasis on chemiluminescent detection,” Methods Enzymol. 463, 573–599 (2009).
[Crossref] [PubMed]

Nano Lett. (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

J. W. Ha, K. Marchuk, and N. Fang, “Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy,” Nano Lett. 12(8), 4282–4288 (2012).
[Crossref] [PubMed]

N. Livneh, M. G. Harats, D. Istrati, H. S. Eisenberg, and R. Rapaport, “A highly directional room-temperature single photon device,” Nano Lett. 16(4), 2527–2532 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8, 15225 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

Nat. Photonics (5)

A. A. Kinkhabwala, K. Mullen, S. Fan, W. E. Moerner, Y. Avlasevich, and Z. Yu, “Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

L. Novotny and N. V. Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Nature (2)

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422(6930), 399–404 (2003).
[Crossref] [PubMed]

M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli, “Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468(7322), 417–421 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

Q. Zhang, P. Hu, and C. Liu, “Realization of enhanced light directional beaming via a Bull’s eye structure composited with circular disk and conical tip,” Opt. Commun. 339, 216–221 (2015).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C. Y. Lai, “Absorption and scattering cross-section extinction values of silver nanoparticles,” Opt. Mater. 58, 439–444 (2016).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. Lett. (3)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Proc. Math. Phys. Eng. Sci. (1)

T. Lafont, N. Totaro, and A. Le Bot, “Coupling strength assumption in statistical energy analysis,” Proc. Math. Phys. Eng. Sci. 473(2200), 20160927 (2017).
[Crossref] [PubMed]

Quantum Science and Technology (1)

H. Abudayyeh and R. Rapaport, “Quantum emitters coupled to circular nanoantennas for high brightness quantum light sources,” Quantum Science and Technology 2(3), 034004 (2017).
[Crossref]

Rsc Adv. (1)

S. Harekrushna, “Fluorescent labeling techniques in biomolecules: a flashback,” Rsc Adv. 2(18), 7017–7029 (2012).
[Crossref]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Toxin Rev. (1)

H. K. Abbas, W. T. Shier, B. W. Horn, and M. A. Weaver, “Cultural Methods for Aflatoxin Detection,” Toxin Rev. 23(2–3), 295–315 (2008).

Other (6)

A. Blázquez-Castro and J. C. Stockert, Fluorescence Microscopy in Life Sciences (Bentham Science Publishers, 2017).

S. Alkaraki, Y. Gao, C. Parini, M. Navarro-Cia, and M. Bernete, “Linearly and circularly polarised Bull’s eye antenna,” Antennas & Propagation Conference. IEEE, 1–3 (2017).

Nikon Corporation, “NIKON Zemax catalog 2017-11,” https://www.nikon.com/products/glass/lineup/materials/optical/ .

Thermo Fisher Scientific, “Alexa Fluor 680 dye,” https://www.thermofisher.com/cn/zh/home/life-science/cell-analysis/fluorophores/alexa-fluor-680.html .

COMSOL Application Gallery, “Scatter on substrate,” https://www.comsol.com/model/scatterer-on-substrate-14699 .

J. M. Steele, N. K. Grady, P. Nordlander, and N. J. Halas, “Plasmon hybridization in complex nanostructures.” Surface Plasmon Nanophotonics 183–196 (Springer, Dordrecht, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematics of (a) Au cross-nanoantenna & (b) Au dimer-nanoantenna on a Hikari glass substrate. The fluorescence emitter is located at the middle of the gap, and is oriented at an angle Φ with respect to the x-axis. The incident circular polarized light illuminates along the z-axis from the top of the structure. The plan view of the (c) cross-nanoantenna (d) dimer nanoantenna,
Fig. 2
Fig. 2 Extinction cross-sections with respect to the main geometrical parameters of the cross-nanoantenna: (a) the gap distance G, (b) the length L, (c) the width W, and (d) the cuspidal head H. The spectral response is shown in the left panel while the corresponding field distribution is illustrated in the right panel. By controlling these parameters, the plasmonic resonance of the nanoantenna can be tuned to match the excitation wavelength of the fluorescence emitter, providing a large field enhancement in the gap region to maximize the excitation rate.
Fig. 3
Fig. 3 (a) Separated x- and y-components at the gap center for both cross-nanoantenna and dimer nanoantenna Cross nanoantenna can generate large field enhancements equally along both x- and y-directions, whereas the dimer configuration can only produce field enhancement along x-direction. (b) The excitation rate enhancement with respect to the fluorophore emitter’s orientation angle Φ. Highly symmetrical cross-nanoantenna can yield higher excitation rate over arbitrary emitter orientation, which is superior than the dimer counterpart.
Fig. 4
Fig. 4 Comparison of (a) radiative rate γ r and non-radiative rate γ nr and (b) quantum yield q between the cross nanoantenna and dimer nanoantenna with respect to the emitter orientation. The quantum yields of the cross structure is generally much stronger than those of the dimer counterpart, showing the advantage of the high-symmetrical structure.
Fig. 5
Fig. 5 Ultimate fluorescence enhancement factor for the cross- and dimer-nanoantenna under circular polarized incidence for arbitrary emitter orientations. The cross structure can provide lager and stable fluorescence enhancement factor than the dimer configuration.
Fig. 6
Fig. 6 3D far field radiation pattern and 2D defocused imaging for (a) an isolated dipole on the substrate, (b) a dipole coupled with the cross nanoantenna and (c) a dipole coupled with the dimer nanoantenna, respectively, with 0°, 45°, 90° oriented emitters. Highly-symmetrical cross-nanoantenna can preserve the original orientation of the emitter while enhancing its intensity, whereas dimer configuration only reflects the main feature at Φ = 0° where the emitter aligns parallel to the dimer axis.
Fig. 7
Fig. 7 (a) Excitation rate, (b) quantum yield and (c) fluorescence enhancement factor for various displacement distance of the emitter. The largest fluorescence enhancement occurs at the center of the gap, indicating the best balance between the excitation rate and the quantum yield. The average fluorescence enhancements of the cross structure still outperform that of the dimer structure, regardless of its position.
Fig. 8
Fig. 8 Schematic of emitter position, 3D far field pattern and 2D defocused imaging for (a) dipole at the center of the gap with zero deviation ( Δx = 0 nm, Δy = 0 nm), (b) dipole deviates along the x-axis to the right with ( Δx = 5 nm, Δy = 0 nm), (c) dipole deviates along the x-axis to the right with ( Δx = 10 nm, Δy = 0 nm), (d) the dipole deviates to the first quadrant with ( Δx = 7.5 nm, Δy = 7.5 nm). The displacement mainly changes the intensity distribution of the image, but has little on the shape of the pattern. The main features of the 3D far field and the defocused imaging still rotate properly with respect to the emitter orientation, and the polarization information is still preserved in general.
Fig. 9
Fig. 9 Influence of substrate’s refractive index (nsub) on (a) Extinction cross-section and (b) fluorescence enhancement performance (excitation rate, quantum yield and fluorescence enhancement factor). A low refractive index substrate is better to obtain a large fluorescence enhancement factor. (c) 3D far-field patterns and the corresponding defocused imaging as a function of the refractive index of the substrate. The substrate could change the directivity and the intensity of the radiation pattern, but has little effect on the orientation of the emitter at the far field.
Fig. 10
Fig. 10 (a) Matching the plasmonic resonance λres with the excitation wavelengthλexc at 680 nm and the emission wavelengthλemi at 700 nm respectively. (b) Excitation rate, (c) quantum yield and (d) ultimate fluorescence enhancement of the two situations. The excitation rate decreases by 17.8%, while the quantum yield decreases by 15.8% when the plasmonic resonances match the emission wavelength. Ultimately, the fluorescence enhancement factor dropped by 32.5%.

Tables (1)

Tables Icon

Table 1 Simulation parameters of coupled fluorophore-nanoantenna system

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η em η em 0 = γ exc γ exc 0 q q 0
q= γ r / γ r 0 γ r / γ r 0 + γ abs / γ r 0 +(1 q 0 )/ q 0
E x = dΩ ( n'cosθ' ncosθ ) 1/2 ( E p cosθ'cosφ E s sinφ)exp(ik's'r'+ikδzcosθ) E y = dΩ ( n'cosθ' ncosθ ) 1/2 ( E p cosθ'sinφ E s cosφ)exp(ik's'r'+ikδzcosθ)

Metrics