Abstract

In this paper, the isostructural Mg3Al2Si3O12 was introduced into the Ce3+-doped yttrium aluminum garnet (Y3Al5O12) for synthesizing (Y1-xMgx)3Al2(Al1-xSix)3O12:Ce3+ (x = 0-0.6) solid solution phosphors. The co-substitution of the (Mg, Si)6+ pair for the (Y, Al)6+ pair leads to lattice shrinkage and then changes the spectral shape and width. The band peaking at ~450 nm shows a substantial broadening with the full width at half maximum increasing from 65 nm to 94 nm. The intensity of excitation spectrum (x = 0.5) at 400 nm is increased by 50% than that (x = 0). The near ultraviolet LED was fabricated with Y1.5Mg1.5Al3.5Si1.5O12:Ce3+ phosphors and a 400 nm chip and can emit strong white light. Therefore, by controlling the content of (Y, Al)6+ substituted by (Mg, Si)6+, the excitation spectrum of Ce3+-doped Y3Al5O12 can be tuned and applied for the near ultraviolet LEDs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design, synthesis and characterization of a new apatite phosphor Sr4La2Ca4(PO4)6O2:Ce3+ with long wavelength Ce3+ emission

Ge Zhu, Yurong Shi, Masayoshi Mikami, Yasuo Shimomura, and Yuhua Wang
Opt. Mater. Express 3(2) 229-236 (2013)

Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs

Te-Wen Kuo, Wei-Ren Liu, and Teng-Ming Chen
Opt. Express 18(3) 1888-1897 (2010)

Optical characteristics and longevity of the line-emitting K2SiF6:Mn4+ phosphor for LED application

Ji Wook Moon, Bong Gul Min, Jin Sung Kim, Myoung Su Jang, Kang Min Ok, Kwan-Young Han, and Jae Soo Yoo
Opt. Mater. Express 6(3) 782-792 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
    [Crossref] [PubMed]
  2. Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
    [Crossref]
  3. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
    [Crossref]
  4. C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
    [Crossref] [PubMed]
  5. A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
    [Crossref]
  6. J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
    [Crossref]
  7. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
    [Crossref] [PubMed]
  8. K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
    [Crossref]
  9. Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
    [Crossref] [PubMed]
  10. Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
    [Crossref] [PubMed]
  11. J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
    [Crossref] [PubMed]
  12. J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
    [Crossref]
  13. Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
    [Crossref]
  14. L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
    [Crossref] [PubMed]
  15. H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
    [Crossref]
  16. G. Li and J. Lin, “Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties,” Chem. Soc. Rev. 43(20), 7099–7131 (2014).
    [Crossref] [PubMed]
  17. W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
    [Crossref]

2018 (3)

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

2017 (2)

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

2016 (4)

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

2015 (1)

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

2014 (3)

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

G. Li and J. Lin, “Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties,” Chem. Soc. Rev. 43(20), 7099–7131 (2014).
[Crossref] [PubMed]

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

2012 (2)

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

2011 (1)

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

2009 (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Balasubramanian, M.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Brinkley, S.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Chai, Z.

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Chan, T. S.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Cheng, B. M.

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Chiang, C. Y.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Chmelka, B. F.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Chuang, Y.-C.

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

Denault, K. A.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

DenBaars, S. P.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Georege, N. C.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

George, N.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Gu, L.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Guo, N.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Hirosaki, N.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Hu, B.

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

Hu, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Huang, A.

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Huang, W. Y.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Huang, Y.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Huang, Z.

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Im, W. B.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Ji, H.

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Jia, Y.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Kate, O. M.

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Kurzman, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Li, G.

G. Li and J. Lin, “Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties,” Chem. Soc. Rev. 43(20), 7099–7131 (2014).
[Crossref] [PubMed]

Li, Y.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Lin, C. C.

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Lin, J.

G. Li and J. Lin, “Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties,” Chem. Soc. Rev. 43(20), 7099–7131 (2014).
[Crossref] [PubMed]

Liu, G.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Liu, L.

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Liu, Q.

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Liu, R. S.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Liu, Y. P.

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Luo, D.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Lv, W.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Ma, C.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Ma, C. G.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Mei, Z.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Meijerink, A.

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

Mikhailovsky, A.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Mikhailovsky, A. A.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

Miller, D. J.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Molokeev, M. S.

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Neuefeind, J.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

Ning, L.

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

Paden, S. R.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

Peng, L.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Poeppelmeier, K. R.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Qiao, H.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Qiao, J.

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

Qiu, J.

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Rickert, K.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Seshadri, R.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Seshadri, R. A.

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

Sheu, H. S.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Shimomura, Y.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Song, Z.

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Takeda, T.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Tsai, Y. T.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Ueda, K.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Wang, L.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Wang, X.

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Wang, Y. K.

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Wen, J.

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

Xia, Z.

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Xiao, Z. R.

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Xie, R. J.

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Yang, Z.

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Yoshimura, F.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

You, H.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Yu, C.

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Zhang, Z.

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

Zhao, J.

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

Zhao, Q.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Zheng, Y.

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

Zhou, W.

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. C. Lin, Y. P. Liu, Z. R. Xiao, Y. K. Wang, B. M. Cheng, and R. S. Liu, “All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution,” ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23(20), 2300–2305 (2011).
[Crossref] [PubMed]

Chem. Eng. J. (1)

J. Zhao, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions,” Chem. Eng. J. 341, 175–186 (2018).
[Crossref]

Chem. Mater. (1)

W. Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H. S. Sheu, T. S. Chan, C. Y. Chiang, W. Zhou, and R. S. Liu, “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) oxynitride phosphors,” Chem. Mater. 26(6), 2075–2085 (2014).
[Crossref]

Chem. Soc. Rev. (2)

Z. Xia and A. Meijerink, “Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications,” Chem. Soc. Rev. 46(1), 275–299 (2017).
[Crossref] [PubMed]

G. Li and J. Lin, “Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties,” Chem. Soc. Rev. 43(20), 7099–7131 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1−xMgx)(Al1−xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Z. Xia, G. Liu, J. Wen, Z. Mei, M. Balasubramanian, M. S. Molokeev, L. Peng, L. Gu, D. J. Miller, Q. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1−xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref] [PubMed]

J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, and Z. Xia, “Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence,” J. Am. Chem. Soc. 140(30), 9730–9736 (2018).
[Crossref] [PubMed]

J. Mater. Chem. (2)

Y. Jia, Y. Huang, Y. Zheng, N. Guo, H. Qiao, Q. Zhao, W. Lv, and H. You, “Color point tuning of Y3Al5O12:Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation,” J. Mater. Chem. 22(30), 15146–15152 (2012).
[Crossref]

K. A. Denault, N. C. Georege, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. Neuefeind, S. P. DenBaars, and R. A. Seshadri, “A green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+ for thermally stable, high color rendition solid state white lighting,” J. Mater. Chem. 22(35), 18204–18213 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, Z. Huang, Z. Xia, O. M. Kate, L. Liu, and R. J. Xie, “New garnet structure phosphors, Lu3xYxMgAl3SiO12: Ce3+ (x = 0–3), developed by solid solution design,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(12), 2359–2366 (2016).
[Crossref]

J. Phys. Chem. C (1)

A. Huang, Z. Yang, C. Yu, Z. Chai, J. Qiu, and Z. Song, “Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs,” J. Phys. Chem. C 121(9), 5267–5276 (2017).
[Crossref]

Light Sci. Appl. (1)

L. Wang, R. J. Xie, Y. Li, X. Wang, C. G. Ma, D. Luo, T. Takeda, Y. T. Tsai, R. S. Liu, and N. Hirosaki, “Ca1-x Li x Al1-x Si1+x N3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes,” Light Sci. Appl. 5(10), e16155 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Prog. Mater. Sci. (1)

Z. Xia and Q. Liu, “Progress in discovery and structural design of color conversion phosphors for LEDs,” Prog. Mater. Sci. 84, 59–117 (2016).
[Crossref]

Sci. China Mater. (1)

J. Qiao, Z. Xia, Z. Zhang, B. Hu, and Q. Liu, “Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs,” Sci. China Mater. 61(7), 985–992 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Full range (10-80°) XRD patterns, (b) selected diffraction peaks in the region between 32.5 and 34° and (c) lattice parameter of (Y1-xMgx)3Al2(Al1-xSix)3O12:0.06Ce3+ (x = 0-0.6). (d) Crystal structures of Y3Al2Al3O12.
Fig. 2
Fig. 2 (a) TEM image and (b) HRTEM image of a single Y2.1Mg0.9Al4.1Si0.9O12:0.06Ce3+ particle. (c) Selected-area electron diffraction pattern along a [00-1] direction. EDS mapping of (d) a single Y2.1Mg0.9Al4.1Si0.9O12:0.06Ce3 particle for (e) Al, (f) Y, (g) Ce, (h) Mg and (i) Si elements.
Fig. 3
Fig. 3 (a) Normalized excitation spectra and (b) emission spectra of (Y1-xMgx)3Al2(Al1-xSix)3O12:0.06Ce3+ (x = 0-0.6). (c) Excitation spectra and (d) emission spectra of Y3Al5O12:0.06Ce3+ with doping different elements (Mg2+, Si4+, and (Mg, Si)6+).
Fig. 4
Fig. 4 Local environment of CeO8 surrounded by (Si/Al)O4 (a), AlO4 (b), YO8 (c), and (Mg/Y)O8 (d)in the crystal structure. Gaussian fitting of the excitation spectra of (Y1-xMgx)3Al2(Al1-xSix)3O12: Ce3+ with x = 0.3 (e), 0.4 (f) and 0.6 (g)
Fig. 5
Fig. 5 Temperature-dependent emission intensity of (Lu1-xMgx)3Al2(Al1-xSix)3O12:Ce3+ (x = 0-0.4).
Fig. 6
Fig. 6 (a) Electroluminescence spectra of wLEDs fabricated with different chips and (Y1-xMgx)3Al2(Al1-xSix)3O12: Ce3+ phosphors. Images of Y1.5Mg1.5Al3.5Si1.5O12:Ce3+ under (b) natural light and (c) 400 nm light. (d) Image of a wLED using 400 nm chip driven under 350 mA.