Abstract

A broadband negative-refractive index metamaterial, composited of two square-shaped aluminum apertures with different title angles etched on both sides of polyimide substrate, has been proposed. The calculated results indicate that the coupling between the titled and untitled square-shaped apertures is more conducive to the high-pass and broadband transmission than the combination of two untitled structure. The high-pass band of metamaterial increases from 0.43 to 0.76 THz with the increasing aperture width from 30.0 to 35.0 μm, meanwhile, the maximum bandwidths of double-negative refraction and negative-refractive index can reach up to 0.58 and 0.78 THz, respectively. The highpass transmission mainly locates at the double-negative refraction region. Furthermore, the negative refraction of the NIMs has been verified by the classical method of the wedge, and the results show many unique properties of the symmetric slab waveguide based on the proposed NIM.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level

Fang Ling, Zheqiang Zhong, Yuan Zhang, Renshuai Huang, and Bin Zhang
Opt. Express 26(23) 30085-30099 (2018)

Low-loss dual-band double-negative chirped metamaterial

Tun Cao, Chenwei Wei, and Martin J. Cryan
J. Opt. Soc. Am. B 32(1) 108-113 (2015)

Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial

Ashwin K. Iyer, Peter C. Kremer, and George V. Eleftheriades
Opt. Express 11(7) 696-708 (2003)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
    [Crossref]
  3. M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
    [Crossref]
  4. F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
    [Crossref] [PubMed]
  5. B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
    [Crossref]
  6. Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).
  7. M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
    [Crossref]
  8. E. Shokati, N. Granpayeh, and M. Danaeifar, “Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface,” Appl. Opt. 56(11), 3053–3058 (2017).
    [Crossref] [PubMed]
  9. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
    [Crossref]
  10. S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
    [Crossref] [PubMed]
  11. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  13. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  14. N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
    [Crossref]
  15. T. Suzuki, M. Sekiya, T. Sato, and Y. Takebayashi, “Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband,” Opt. Express 26(7), 8314–8324 (2018).
    [Crossref] [PubMed]
  16. C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
    [Crossref]
  17. W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
    [Crossref]
  18. Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
    [Crossref]
  19. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
    [Crossref] [PubMed]
  20. Q. Meng, Z. Zhong, and B. Zhang, “Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials,” Sci. Rep. 7(1), 45708 (2017).
    [Crossref] [PubMed]
  21. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  22. W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
    [Crossref]
  23. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  24. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
    [Crossref] [PubMed]
  25. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  26. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  27. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  28. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
    [Crossref]
  29. X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
    [Crossref] [PubMed]
  30. Z. Li and Y. J. Ding, “Terahertz Broadband-Stop Filters,” IEEE J. Quantum Electron. 19(1), 8500705 (2013).
    [Crossref]
  31. D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
    [Crossref]
  32. J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
    [Crossref] [PubMed]
  33. F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
    [Crossref] [PubMed]
  34. B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
    [Crossref]
  35. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003).
    [Crossref] [PubMed]
  36. C. S. Ma and S. Y. Liu, Optical Waveguide Mode Theory (Jilin University Press, 2006)
  37. A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE. MTT. 20(4), 258–265 (1972).
    [Crossref]
  38. A. E. Atia, A. E. Williams, and R. W. Neweomb, “Narrow-Band, Multiple-Coupled Cavity Synthesis,” IEEE,” CAS 21(5), 649–655 (1974).

2018 (4)

T. Suzuki, M. Sekiya, T. Sato, and Y. Takebayashi, “Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband,” Opt. Express 26(7), 8314–8324 (2018).
[Crossref] [PubMed]

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
[Crossref] [PubMed]

2017 (3)

Q. Meng, Z. Zhong, and B. Zhang, “Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials,” Sci. Rep. 7(1), 45708 (2017).
[Crossref] [PubMed]

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

E. Shokati, N. Granpayeh, and M. Danaeifar, “Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface,” Appl. Opt. 56(11), 3053–3058 (2017).
[Crossref] [PubMed]

2015 (1)

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

2014 (3)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

2013 (3)

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

Z. Li and Y. J. Ding, “Terahertz Broadband-Stop Filters,” IEEE J. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

2011 (3)

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

2010 (1)

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

2009 (2)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

2008 (3)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

2007 (3)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[Crossref] [PubMed]

2006 (2)

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

2003 (2)

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
[Crossref]

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003).
[Crossref] [PubMed]

2002 (2)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1974 (1)

A. E. Atia, A. E. Williams, and R. W. Neweomb, “Narrow-Band, Multiple-Coupled Cavity Synthesis,” IEEE,” CAS 21(5), 649–655 (1974).

1972 (1)

A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE. MTT. 20(4), 258–265 (1972).
[Crossref]

Ahn, K. M.

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

Atia, A. E.

A. E. Atia, A. E. Williams, and R. W. Neweomb, “Narrow-Band, Multiple-Coupled Cavity Synthesis,” IEEE,” CAS 21(5), 649–655 (1974).

A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE. MTT. 20(4), 258–265 (1972).
[Crossref]

Azad, A. K.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
[Crossref]

Bao, Y.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Beigang, R.

Cao, W.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

Chan, C. H.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, C. L.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chen, C.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Chen, L.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Chen, Y.

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Cho, M. H.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Danaeifar, M.

Ding, Y. J.

Z. Li and Y. J. Ding, “Terahertz Broadband-Stop Filters,” IEEE J. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

Dolling, G.

Fedotov, V. A.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fischer, B. M.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Granpayeh, N.

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
[Crossref]

Gu, J.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Han, J.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

He, M.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
[Crossref]

Helm, H.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Hsieh, F. J.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Huang, R.

F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
[Crossref] [PubMed]

Huang, R. S.

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Huang, Y.

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Imhof, C.

Jang, W. H.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Jepsen, P. U.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Kang, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003).
[Crossref] [PubMed]

Kleine-Ostmann, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Koch, M.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Krumbholz, N.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Kurner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Lam, V. D.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Lee, Y. P.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Li, C.

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, N.

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

Li, R. F.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Li, W. L.

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Li, Z.

Z. Li and Y. J. Ding, “Terahertz Broadband-Stop Filters,” IEEE J. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

Liang, L.

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

Lin, H. R.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Linden, S.

Ling, F.

F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
[Crossref] [PubMed]

Liu, C.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Liu, Y.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Lu, M.

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Lu, Y.

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Lv, X.

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Ma, H.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Ma, R.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Meng, Q.

Q. Meng, Z. Zhong, and B. Zhang, “Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials,” Sci. Rep. 7(1), 45708 (2017).
[Crossref] [PubMed]

Meng, Q. L.

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Mittleman, D.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Neweomb, R. W.

A. E. Atia, A. E. Williams, and R. W. Neweomb, “Narrow-Band, Multiple-Coupled Cavity Synthesis,” IEEE,” CAS 21(5), 649–655 (1974).

Ouyang, C.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Park, C. S.

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

Park, J. W.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Park, J. Y.

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Paul, O.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Plum, E.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

Premaratne, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Pun, Y. B.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Qu, S.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Reinhard, B.

Rhee, J. Y.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Sato, T.

Schoebel, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Sekiya, M.

Shadrivov, I. V.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003).
[Crossref] [PubMed]

Shen, J.

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

Shi, F.

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Shokati, E.

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Si, L. M.

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Sikdar, D.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Sim, Y. C.

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

Singh, R.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Son, J. H.

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Stuart, C. T.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

Su, X.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Sukhorukov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003).
[Crossref] [PubMed]

Sun, C.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

Suzuki, T.

Takebayashi, Y.

Tan, S.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Tian, Z.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Tung, N. T.

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Wang, J.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Wang, Q.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Wang, W. C.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Wegener, M.

Williams, A. E.

A. E. Atia, A. E. Williams, and R. W. Neweomb, “Narrow-Band, Multiple-Coupled Cavity Synthesis,” IEEE,” CAS 21(5), 649–655 (1974).

A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE. MTT. 20(4), 258–265 (1972).
[Crossref]

Wu, B. I.

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
[Crossref]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Wu, D.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Wu, X.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Xia, S.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Xiang, C. H.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Xiao, F.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Xu, H.

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Xu, N.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Xu, X.

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

Xu, Z.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Yan, F.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Yang, Y.

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Ye, H.

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Ye, S.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
[Crossref]

Zengerle, R.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, B.

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
[Crossref] [PubMed]

Q. Meng, Z. Zhong, and B. Zhang, “Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials,” Sci. Rep. 7(1), 45708 (2017).
[Crossref] [PubMed]

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

Zhang, Q. L.

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Zhang, S.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, W.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
[Crossref]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, Y.

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
[Crossref]

Zheludev, N. I.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

Zhong, S.

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Zhong, Z.

F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
[Crossref] [PubMed]

Q. Meng, Z. Zhong, and B. Zhang, “Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials,” Sci. Rep. 7(1), 45708 (2017).
[Crossref] [PubMed]

Zhong, Z. Q.

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Zhou, F.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

AIP Adv. (1)

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv, and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Adv. 4(3), 037103 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

CAS (1)

A. E. Atia, A. E. Williams, and R. W. Neweomb, “Narrow-Band, Multiple-Coupled Cavity Synthesis,” IEEE,” CAS 21(5), 649–655 (1974).

IEEE Antennas Propag. Mag. (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Li and Y. J. Ding, “Terahertz Broadband-Stop Filters,” IEEE J. Quantum Electron. 19(1), 8500705 (2013).
[Crossref]

IEEE Trans. THz Sci. Techn. (1)

Y. C. Sim, K. M. Ahn, J. Y. Park, C. S. Park, and J. H. Son, “Temperature dependent terahertz imaging of excised oral malignant melanoma,” IEEE Trans. THz Sci. Techn. 3(4), 368–373 (2013).

IEEE. MTT. (1)

A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE. MTT. 20(4), 258–265 (1972).
[Crossref]

J. Appl. Phys. (3)

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003).
[Crossref]

M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Appl. Phys. 100(10), 103104 (2006).
[Crossref]

N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Single-and double-negative refractive indices of combined metamaterial structure,” J. Appl. Phys. 106(5), 053109 (2009).
[Crossref]

Nat. Mater. (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

W. L. Li, Q. L. Meng, R. S. Huang, Z. Q. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259(1), 389–392 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003).
[Crossref] [PubMed]

J. Wang, S. Qu, Z. Xu, H. Ma, S. Xia, Y. Yang, X. Wu, Q. Wang, and C. Chen, “Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036601 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Plasmonics (1)

D. Wu, Y. Liu, L. Chen, R. Ma, C. Liu, C. H. Xiang, R. F. Li, and H. Ye, “Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry,” Plasmonics 13(4), 1287–1295 (2018).
[Crossref]

Proc. IEEE (1)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Sci. Rep. (5)

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1(1), 78 (2011).
[Crossref] [PubMed]

S. Zhong, Y. Lu, C. Li, H. Xu, F. Shi, and Y. Chen, “Tunable plasmon lensing in graphene-based structure exhibiting negative refraction,” Sci. Rep. 7(1), 41788 (2017).
[Crossref] [PubMed]

Q. Meng, Z. Zhong, and B. Zhang, “Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials,” Sci. Rep. 7(1), 45708 (2017).
[Crossref] [PubMed]

F. Ling, Z. Zhong, R. Huang, and B. Zhang, “A broadband tunable terahertz negative refractive index metamaterial,” Sci. Rep. 8(1), 9843 (2018).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, R. Singh, S. Zhang, F. Yan, J. Han, and W. Zhang, “Dynamic mode coupling in terahertz metamaterials,” Sci. Rep. 5(1), 10823 (2015).
[Crossref] [PubMed]

Other (1)

C. S. Ma and S. Y. Liu, Optical Waveguide Mode Theory (Jilin University Press, 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The Schematic illustration of the NIMs, E, H and k represent the electric field, magnetic field and propagation direction of the incident THz wave.
Fig. 2
Fig. 2 (a) The normalized transmission spectra of the double-layered MMs with different structures. (b) The electric field distributions of NIMs.
Fig. 3
Fig. 3 (a) The normalized transmission spectra of MMs with different lengths a, the solid and dotted curves with the same color represent the MMs with the same value of a. (b) The magnetic field distributions and (c) the electric field distributions with a = 30.0 μm, a = 32.0 μm, a = 34.0 μm, a = 35.0 μm.
Fig. 4
Fig. 4 The retrieved parameters of the NIMs with (a) a = 30.0 μm (b) a = 32.0 μm (c) a = 34.0 μm (d) a = 35.0 μm, respectively. The blue and pink regions represent the ranges of SNR with ε1 < 0 and μ1 < 0, respectively. The overlap area of two regions reveals the ranges of DNR with ε1 < 0 and μ1 < 0.
Fig. 5
Fig. 5 The contour maps of electric field Ey in x-z plane at (a) f1 = 4.00 THz, (b) f2 = 4.28 THz and (c) f3 = 4.50 THz at a = 30.0 μm.
Fig. 6
Fig. 6 The electric field distributions of the refracted THz radiation at (a) 4.39 THz and (b) 4.41 THz for the NIMs with a = 35.0 μm.
Fig. 7
Fig. 7 The TE guided modes of the symmetric slab waveguide with different thicknesses at (a) 4.39 THz and (b) 4.41 THz for the NIMs with a = 35.0 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n= 1 kt cos 1 [ 1 2S21 (1 S 11 2 + S 21 2 )]
Z= (1+S11) 2 S 21 2 (1S11) 2 S 21 2
ε=n/Z
μ=nZ
k 1x 2 = β 2 ω 2 c 2 ε 1 μ 1
k 2x 2 = ω 2 c 2 ε 2 μ 2 β 2
k 1x d= μ 1 μ 2 k 2x dtan( k 2x d 2 )
k 1x d= μ 1 μ 2 k 2x dcot( k 2x d 2 )