Abstract

We observe strongly dissimilar scattering from the two types of sidewall configurations (here referred to as “edges”) in hexagonal quasi-monocrystalline gold flakes with thicknesses around 1 micron. As the origin of the phenomena, we identify the interference between a direct, quasi-specular scattering and an indirect scattering process involving an intermediate surface-plasmon state. The dissimilarity between the two types of edges is a direct consequence of the three-fold symmetry around the [111]-axis and the intrinsic chirality of a face-centered cubic lattice. We propose that this effect can be potentially used to estimate dielectric function of the monocrystalline gold.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

6 November 2018: A typographical correction was made to the title.


OSA Recommended Articles
Advanced engineering of single-crystal gold nanoantennas

R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. Colas-des-Francs, B. Cluzel, and A. Bouhelier
Opt. Mater. Express 7(4) 1157-1168 (2017)

Goniospectrometric space curve for coatings with special effect pigments

Nina Rogelj and Marta Klanjšek Gunde
Appl. Opt. 55(1) 122-132 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Unrelenting plasmons,” Nat. Photon. 11, 8–10 (2017).
    [Crossref]
  2. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
    [Crossref] [PubMed]
  3. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
    [Crossref]
  4. X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
    [Crossref]
  5. B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
    [Crossref]
  6. E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
    [Crossref]
  7. R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. C. des Francs, B. Cluzel, and A. Bouhelier, “Advanced engineering of single-crystal gold nanoantennas,” Opt. Mater. Express 7, 1157–1168 (2017).
    [Crossref]
  8. W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
    [Crossref] [PubMed]
  9. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
    [Crossref] [PubMed]
  10. W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
    [Crossref] [PubMed]
  11. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
    [Crossref]
  12. S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
    [Crossref] [PubMed]
  13. G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
    [Crossref] [PubMed]
  14. B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
    [Crossref] [PubMed]
  15. C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Func. Mater. 15, 1197–1208 (2005).
    [Crossref]
  16. K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96, 125134 (2017).
    [Crossref]
  17. A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
    [Crossref]
  18. S. I. Bozhevolnyi and N. A. Mortensen, “Plasmonics for emerging quantum technologies,” Nanophotonics 6, 1185–1188 (2017).
    [Crossref]
  19. A. I. Fernández-Domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, “Plasmon-enhanced generation of non-classical light,” ACS Photonics5 (2018).
    [Crossref]
  20. Y. Xiong and X. Lu, “Synthesis of gold colloids,” in “Metallic Nanostructures: From Controlled Synthesis to Applications I”, D. M. P. Mingos, ed. (Springer International Publishing, 2014).
  21. S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
    [Crossref] [PubMed]
  22. T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
    [Crossref]
  23. F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
    [Crossref]
  24. S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
    [Crossref]
  25. A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
    [Crossref] [PubMed]
  26. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
    [Crossref] [PubMed]
  27. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
    [Crossref]
  28. B. Radha and G. U. Kulkarni, “A real time microscopy study of the growth of giant au microplates,” Cryst. Growth Des. 11, 320–327 (2011).
    [Crossref]
  29. Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
    [Crossref]
  30. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]
  31. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]

2018 (1)

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

2017 (7)

R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. C. des Francs, B. Cluzel, and A. Bouhelier, “Advanced engineering of single-crystal gold nanoantennas,” Opt. Mater. Express 7, 1157–1168 (2017).
[Crossref]

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Unrelenting plasmons,” Nat. Photon. 11, 8–10 (2017).
[Crossref]

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96, 125134 (2017).
[Crossref]

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

S. I. Bozhevolnyi and N. A. Mortensen, “Plasmonics for emerging quantum technologies,” Nanophotonics 6, 1185–1188 (2017).
[Crossref]

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

2016 (1)

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

2015 (6)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
[Crossref]

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

2014 (2)

W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
[Crossref] [PubMed]

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

2013 (3)

T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

2012 (3)

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

2011 (1)

B. Radha and G. U. Kulkarni, “A real time microscopy study of the growth of giant au microplates,” Cryst. Growth Des. 11, 320–327 (2011).
[Crossref]

2010 (1)

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

2009 (1)

Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

2005 (1)

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Func. Mater. 15, 1197–1208 (2005).
[Crossref]

1994 (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Aeschlimann, M.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Arbouet, A.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Bashouti, M. Y.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Berthel, M.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

Bethell, D.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

Biagioni, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Bouhelier, A.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and N. A. Mortensen, “Plasmonics for emerging quantum technologies,” Nanophotonics 6, 1185–1188 (2017).
[Crossref]

A. I. Fernández-Domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, “Plasmon-enhanced generation of non-classical light,” ACS Photonics5 (2018).
[Crossref]

Brüning, C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Brust, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

Callegari, V.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Chan, C. T.

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96, 125134 (2017).
[Crossref]

Chang, Y.-M.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

Chassagnon, R.

Chen, W.-L.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

Chen, X.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Christiansen, S.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Cluzel, B.

Colas des Francs, G.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

Cuche, A.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

Dai, W.-H.

W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
[Crossref] [PubMed]

Davis, T. J.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Demichel, O.

des Francs, G. C.

Devadas, M. S.

T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
[Crossref]

Dieker, C.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Ding, K.

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96, 125134 (2017).
[Crossref]

Drezet, A.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

Dujardin, E.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Feichtner, T.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Unrelenting plasmons,” Nat. Photon. 11, 8–10 (2017).
[Crossref]

A. I. Fernández-Domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, “Plasmon-enhanced generation of non-classical light,” ACS Photonics5 (2018).
[Crossref]

Forchel, A.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Frank, B.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Fu, L.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Gal, L.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

García-Vidal, F. J.

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Unrelenting plasmons,” Nat. Photon. 11, 8–10 (2017).
[Crossref]

Geisler, P.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Giessen, H.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Girard, C.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Gordan, O. D.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Grossmann, S.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Hartland, G. V.

T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
[Crossref]

Hecht, B.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Herbst, F.

Hoffmann, B.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Horn-von Hoegen, M.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Huang, C.-B.

W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
[Crossref] [PubMed]

Huang, J.-S.

W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
[Crossref] [PubMed]

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Huant, S.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Jiang, N.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Jiang, R.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Kahl, P.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Kamp, M.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Kilbane, D.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Kim, D.-S.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Knapp, A. G.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Krauss, E.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Kulkarni, G. U.

B. Radha and G. U. Kulkarni, “A real time microscopy study of the growth of giant au microplates,” Cryst. Growth Des. 11, 320–327 (2011).
[Crossref]

Kullock, R.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

Kumar, U.

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

Lee, J. S.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Lee, Y.-Y.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

Li, F.-C.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

Li, Q.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Lienau, C.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Lim, B.

Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

Lin, F.-C.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
[Crossref] [PubMed]

Lin, H.-Q.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Lo, S. S.

T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
[Crossref]

Lofton, C.

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Func. Mater. 15, 1197–1208 (2005).
[Crossref]

Lu, X.

Y. Xiong and X. Lu, “Synthesis of gold colloids,” in “Metallic Nanostructures: From Controlled Synthesis to Applications I”, D. M. P. Mingos, ed. (Springer International Publishing, 2014).

Lundt, N.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

Luo, S.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Mackovic, M.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Mahro, A. K.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Major, T. A.

T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
[Crossref]

Markey, L.

Martín-Moreno, L.

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Unrelenting plasmons,” Nat. Photon. 11, 8–10 (2017).
[Crossref]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Mathias, S.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Méjard, R.

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Meyer zu Heringdorf, F. J.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Meyer zu Heringdorf, F.-J.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Mortensen, N. A.

S. I. Bozhevolnyi and N. A. Mortensen, “Plasmonics for emerging quantum technologies,” Nanophotonics 6, 1185–1188 (2017).
[Crossref]

A. I. Fernández-Domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, “Plasmon-enhanced generation of non-classical light,” ACS Photonics5 (2018).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Orenstein, M.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Park, N.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Petit, M.

Piglosiewicz, B.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Podbiel, D.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

Prangsma, J. C.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Qin, F.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Qiu, M.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Radha, B.

B. Radha and G. U. Kulkarni, “A real time microscopy study of the growth of giant au microplates,” Cryst. Growth Des. 11, 320–327 (2011).
[Crossref]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Richter, P.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Ristok, S.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Ruan, Q.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Sadiq, D.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Salaheldin, A. M.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Schiffrin, D. J.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

Schmidt, S.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Sennhauser, U.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Sharma, J.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Shirdel, J.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Sigmund, W.

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Func. Mater. 15, 1197–1208 (2005).
[Crossref]

Skrabalak, S.

Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Spektor, G.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Spiecker, E.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sun, L.-D.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Teulle, A.

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Vasa, P.

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

Verdy, A.

Viarbitskaya, S.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

Wang, J.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Weinmann, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Weiss, T.

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

Wu, X.

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
[Crossref]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Xia, Y.

Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

Xiong, Y.

Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

Y. Xiong and X. Lu, “Synthesis of gold colloids,” in “Metallic Nanostructures: From Controlled Synthesis to Applications I”, D. M. P. Mingos, ed. (Springer International Publishing, 2014).

Yan, C.-H.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Yang, H.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Yang, Y.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Zahn, D. R. T.

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Zhao, D.

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

Zhao, T.

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Ziegler, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

ACS Nano (2)

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053–9062 (2014).
[Crossref] [PubMed]

S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano 6, 6040–6048 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Adv. Func. Mater. (1)

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Func. Mater. 15, 1197–1208 (2005).
[Crossref]

Adv. Opt. Mater. (1)

F. Qin, T. Zhao, R. Jiang, N. Jiang, Q. Ruan, J. Wang, L.-D. Sun, C.-H. Yan, and H.-Q. Lin, “Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions,” Adv. Opt. Mater. 4, 76–85 (2015).
[Crossref]

Angew. Chem. Int. Ed. (1)

Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

Appl. Phys. Lett. (1)

S. Viarbitskaya, A. Teulle, A. Cuche, J. Sharma, C. Girard, E. Dujardin, and A. Arbouet, “Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets,” Appl. Phys. Lett. 103, 131112 (2013).
[Crossref]

Cryst. Growth & Des. (1)

E. Krauss, R. Kullock, X. Wu, P. Geisler, N. Lundt, M. Kamp, and B. Hecht, “Controlled growth of high-aspect-ratio single-crystalline gold platelets,” Cryst. Growth & Des. 18, 1297–1302 (2018).
[Crossref]

Cryst. Growth Des. (1)

B. Radha and G. U. Kulkarni, “A real time microscopy study of the growth of giant au microplates,” Cryst. Growth Des. 11, 320–327 (2011).
[Crossref]

Cryst. Res. Technol. (1)

X. Wu, R. Kullock, E. Krauss, and B. Hecht, “Single-crystalline gold microplates grown on substrates by solution-phase synthesis,” Cryst. Res. Technol. 50, 595–602 (2015).
[Crossref]

J. Chem. Soc., Chem. Commun. (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).
[Crossref]

J. Phys. Chem. C (1)

T. A. Major, M. S. Devadas, S. S. Lo, and G. V. Hartland, “Optical and dynamical properties of chemically synthesized gold nanoplates,” J. Phys. Chem. C 117, 1447–1452 (2013).
[Crossref]

Nano Lett. (2)

W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, “Mode conversion in high-definition plasmonic optical nanocircuits,” Nano Lett. 14, 3881–3886 (2014).
[Crossref] [PubMed]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

S. I. Bozhevolnyi and N. A. Mortensen, “Plasmonics for emerging quantum technologies,” Nanophotonics 6, 1185–1188 (2017).
[Crossref]

Nanoscale (1)

B. Hoffmann, M. Y. Bashouti, T. Feichtner, M. Mačković, C. Dieker, A. M. Salaheldin, P. Richter, O. D. Gordan, D. R. T. Zahn, E. Spiecker, and S. Christiansen, “New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers,” Nanoscale 8, 4529–4536 (2016).
[Crossref]

Nat. Commun. (1)

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[Crossref]

Nat. Mater. (1)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426 (2013).
[Crossref] [PubMed]

Nat. Photon. (2)

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photon. 9, 582 (2015).
[Crossref]

A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Unrelenting plasmons,” Nat. Photon. 11, 8–10 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (4)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

K. Ding and C. T. Chan, “Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method,” Phys. Rev. B 96, 125134 (2017).
[Crossref]

A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S. Huant, E. Dujardin, C. Girard, and A. Drezet, “Near-field hyperspectral quantum probing of multimodal plasmonic resonators,” Phys. Rev. B 95, 121402 (2017).
[Crossref]

Sci. Adv. (1)

B. Frank, P. Kahl, D. Podbiel, G. Spektor, M. Orenstein, L. Fu, T. Weiss, M. Horn-von Hoegen, T. J. Davis, F.-J. Meyer zu Heringdorf, and H. Giessen, “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Sci. Adv. 3, e1700721 (2017).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Luo, H. Yang, Y. Yang, D. Zhao, X. Chen, M. Qiu, and Q. Li, “Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates,” Sci. Rep. 5, 13424 (2015).
[Crossref] [PubMed]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2015).
[Crossref] [PubMed]

Science (1)

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F. J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref] [PubMed]

Other (2)

A. I. Fernández-Domínguez, S. I. Bozhevolnyi, and N. A. Mortensen, “Plasmon-enhanced generation of non-classical light,” ACS Photonics5 (2018).
[Crossref]

Y. Xiong and X. Lu, “Synthesis of gold colloids,” in “Metallic Nanostructures: From Controlled Synthesis to Applications I”, D. M. P. Mingos, ed. (Springer International Publishing, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SEM image of the Au monocrystalline flake (75° tilted view, scale bar: 10 μm); (b) and (c) close-up high resolution SEM images of the two corners of the flake (75° tilted view, scale bars: 500 nm). Artificial coloration is used to highlight different crystallographic planes of the facets: light yellow for {111} and dark yellow for {100}. (d) Bright-field and (e)–(h) dark-field optical images of the flake captured with 4 different NA’s, indicated in the images (scale bars: 10 μm).
Fig. 2
Fig. 2 Schematic drawing of the flake’s cross-section (cut trough two opposite edges) with indicated geometrical parameters and Miller indices of the the facets.
Fig. 3
Fig. 3 (a) Experimental and (b) simulated DF spectra of the two types of edges of the flake with nominal dimensions hu = 130 nm and hl = 580 nm. Both experimental and simulated spectra are acquired with NA = 0.4.
Fig. 4
Fig. 4 Schematics of the enhanced-scattering mechanism. (a) The dark-field illumination has two possible paths to scatter upwards into the objective: a direct path is the quasi-specular reflection at the upper facet; an additional indirect path is by coupling to a surface wave at the lowest corner, travelling along the lower facet and coupling out at the upper facet. (b) The indirect path is delayed with respect to the direct path by a phase that depends on thickness of the lower flake part and on the angle θ, included by the direction of grazing illumination and the lower facet. This leads to a distinct interference effect in the far-field.
Fig. 5
Fig. 5 Simulated scattering intensity at λ0 = 700 nm for the two types of edges with hu = 130 nm and range of hl values. Estimated periodicity of the oscillations are ≈ 380 nm for the type-A and ≈ 340 nm for the type-B edge. The horizontal lines show the estimates for Δ h l ( A ) 420 nm and Δ h l ( B ) 320 nm , according to Eq. (2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ = exp [ i ( k SPP + k 0 cos θ ) L ]
Δ h l ( A ) = 2 π sin β k SPP + k 0 cos ( γ β )
Δ h l ( A ) 420 nm and Δ h l ( B ) 320 nm .