Abstract

The mechanical stress-strain behaviour of polymer optical fibres (POFs) drawn from various materials was measured, both before and after temperature annealing of the POFs. The POFs were drawn from PMMA (GEHR), Zeonex (480R), PC (Makrolon LED2245) and two different grades of Topas (8007S-04 and 5013S-04). With fibre drawing stresses at or above the elastic (uniaxial extensional) plateau modulus, the polymer chains in the POFs have a high degree of alignment, which has a large impact on fibre mechanical behaviour. The testing was performed at straining rates ranging from 0.011%/s, to 1.1%/s for the un-annealed fibres and a straining rate of 1.1%/s for the annealed ones. The elastic modulus of the tested POFs showed no sensitivity toward variation of straining rate. In the case of Topas 5013S-04 and PMMA, the producer-reported values are the same as the one obtained here for the POFs both before and after annealing. The drawn POFs made of Zeonex, PC, and Topas 8007S-04 exhibit larger elastic modulus than the respective materials in the bulk form. The elastic modulus of these fibres is reduced upon annealing by 10-15%, but still remains above the producer-reported values for the bulk polymers. In the nonlinear elastic region, only the PC POF is statistically unaffected by the changes in the straining rate, while Topas 8007S-04 POF shows insensitivity to the straining rate until 3% strain. All other changes affect the stress-strain curves. The annealing flattens all stress-strain curves, making the fibres more sensitive to yield.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques
Opt. Mater. Express 8(4) 804-815 (2018)

Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).
  2. D. J. Webb, “Polymer Fiber Bragg Grating Sensors and Their Application,” in Optical Fiber Sensors: Advanced Techniques and Applications, G. Rajan, ed. (CRC Press, 2015).
  3. K. Peters, “Polymer optical fiber sensors — a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  4. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  5. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  6. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
    [Crossref]
  7. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  8. D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
    [Crossref] [PubMed]
  9. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [Crossref] [PubMed]
  10. M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).
  11. A. Argyros, “Microstructures in Polymer Fibres for Optical Fibres, THz Waveguide, and Fibre-Based Metamaterials,” ISRN Optics, 785162 (2013).
  12. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
    [Crossref]
  13. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  14. T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
    [Crossref]
  15. W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
    [Crossref]
  16. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  17. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  18. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
    [Crossref]
  19. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
    [Crossref]
  20. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
    [Crossref]
  21. M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
    [Crossref]
  22. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  23. A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
    [Crossref]
  24. I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
    [Crossref]
  25. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  26. D. Bosc and C. Toinen, “Tensile mechanical properties and reduced internal stresses of polymer optical fiber,” Polym. Compos. 14(5), 410–413 (1993).
    [Crossref]
  27. C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
    [Crossref]
  28. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  29. A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804–815 (2018).
    [Crossref]
  30. Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments.
  31. Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber.
  32. GEHR GmbH, “Technical Data Sheet – GEHR PMMA®,” http://www.gehrplastics.com/products-and-applications/material/acrylic.html .
  33. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [Crossref]
  34. TOPAS Advanced Polymers Inc, “Technical data sheet - TOPAS® 8007S-04,” (TOPAS Advanced Polymers Inc., 2017), https://Topas.com/sites/default/files/TDS_8007S-04_e_EU.pdf .
  35. TOPAS Advanced Polymers Inc, “Technical data sheet - TOPAS® 5013S-04,” (TOPAS Advanced Polymers Inc., 2017), https://Topas.com/sites/default/files/TDS_5013S%E2%80%9304_e_EU.pdf .
  36. ZEON corporation, “ZEON Cyclo Olefin Polymer (COP) ZEONEX,” (ZEON corporation 2016), http://www.zeon.co.jp/content/200181690.pdf .
  37. Covestro, “Makrolon LED2245,” (Covestro 2017), file:///C:/Users/hkra/Downloads/Makrolon_LED2245_ISO_en%20(1).pdf.
  38. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of Microstructure Optical Fibres. Part I: Problem Formulation and Numerical Modelling of Transient Draw Process,” J. Lightwave Technol. 23(7), 2245–2254 (2005).
    [Crossref]
  39. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of Microstructured Optical Fibres. Part II: Numerical Modeling of Steady-State Draw Process,” J. Lightwave Technol. 23(7), 2255–2266 (2005).
    [Crossref]
  40. L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
    [Crossref]
  41. A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
    [Crossref]
  42. K. Kalli and D. J. Webb, “Polymer Optical Fiber-Based Sensors,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, ed. (EPFL Press, 2011).
  43. H. K. Rasmussen and Q. Huang, “Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts,” Rheol. Acta 53(3), 199–208 (2014).
    [Crossref]
  44. A. Bach, H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the filament stretching rheometer,” J. Rheol. (N.Y.N.Y.) 47(2), 429–441 (2003).
    [Crossref]
  45. N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
    [Crossref] [PubMed]
  46. C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
    [Crossref] [PubMed]
  47. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
    [Crossref]
  48. A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
    [Crossref]
  49. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  50. V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
    [Crossref]
  51. N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
    [Crossref]
  52. B. Crist, “Yield processes in glassy polymers,” in The Physics of Glassy Polymers, R. N. Haward and R. J. Young, ed. (Springer Science & Business Media, 1997).
  53. J. Rottler and M. O. Robbins, “Yield conditions for deformation of amorphous polymer glasses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051801 (2001).
    [Crossref] [PubMed]
  54. C. Chui and M. C. Boyce, “Monte Carlo Modeling of Amorphous Polymer Deformation: Evolution of Stress with Strain,” Macromolecules 32(11), 3795–3808 (1999).
    [Crossref]

2018 (1)

2017 (6)

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

2016 (4)

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

2015 (2)

W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

2014 (2)

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

H. K. Rasmussen and Q. Huang, “Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts,” Rheol. Acta 53(3), 199–208 (2014).
[Crossref]

2013 (3)

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

2012 (3)

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

2011 (3)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

K. Peters, “Polymer optical fiber sensors — a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

2010 (1)

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
[Crossref]

2009 (1)

2007 (1)

2005 (3)

2003 (2)

A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
[Crossref]

A. Bach, H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the filament stretching rheometer,” J. Rheol. (N.Y.N.Y.) 47(2), 429–441 (2003).
[Crossref]

2002 (1)

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

2001 (2)

1999 (3)

C. Chui and M. C. Boyce, “Monte Carlo Modeling of Amorphous Polymer Deformation: Evolution of Stress with Strain,” Macromolecules 32(11), 3795–3808 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

1994 (1)

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

1993 (1)

D. Bosc and C. Toinen, “Tensile mechanical properties and reduced internal stresses of polymer optical fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

1986 (1)

N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
[Crossref]

Aasmul, S.

U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
[Crossref]

Abang, A.

W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
[Crossref]

Adam, A. J. L.

Almdal, K.

A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
[Crossref]

Ames, N. M.

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
[Crossref]

Anand, L.

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
[Crossref]

André, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

Antunes, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

Argyros, A.

Bach, A.

A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
[Crossref]

A. Bach, H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the filament stretching rheometer,” J. Rheol. (N.Y.N.Y.) 47(2), 429–441 (2003).
[Crossref]

Bang, O.

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804–815 (2018).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Barton, G. W.

Bassett, I.

Bjarklev, A.

Bosc, D.

D. Bosc and C. Toinen, “Tensile mechanical properties and reduced internal stresses of polymer optical fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

Boyce, M. C.

C. Chui and M. C. Boyce, “Monte Carlo Modeling of Amorphous Polymer Deformation: Evolution of Stress with Strain,” Macromolecules 32(11), 3795–3808 (1999).
[Crossref]

Brauner, C.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Bucaro, J. A.

N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
[Crossref]

Bundalo, I.-L.

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Çetinkaya, O.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

Chester, S. A.

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
[Crossref]

Chu, P. L.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Chui, C.

C. Chui and M. C. Boyce, “Monte Carlo Modeling of Amorphous Polymer Deformation: Evolution of Stress with Strain,” Macromolecules 32(11), 3795–3808 (1999).
[Crossref]

Cole, J. H.

N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
[Crossref]

de Sterke, C. M.

Demirci, G.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

Ding, J. L.

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

Emiliyanov, G.

Fasano, A.

Fetters, L. J.

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

Fleming, S.

Frizera, A.

Gawdzik, B.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

Hassager, O.

A. Bach, H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the filament stretching rheometer,” J. Rheol. (N.Y.N.Y.) 47(2), 429–441 (2003).
[Crossref]

A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
[Crossref]

Hassan, U.

U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Herrmann, A. S.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Hesselbach, J.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Hoiby, P.

Hoiby, P. E.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Hu, Z.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Huang, Q.

H. K. Rasmussen and Q. Huang, “Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts,” Rheol. Acta 53(3), 199–208 (2014).
[Crossref]

Issa, N.

Janting, J.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
[Crossref]

Jarzynski, J.

N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
[Crossref]

Jensen, J.

Jensen, J. B.

Jepsen, P. U.

Jiang, C. H.

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

Johns, W. E.

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Kalaba, S.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Kalli, K.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Kibben, S.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Kim, G. B.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Kjaer, E. M.

Koerdt, M.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Koutsides, C.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

Krebber, K.

Kroll, L.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Kuzyk, M. G.

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

Lacraz, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

Lagakos, N.

N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
[Crossref]

Large, M.

Large, M. C. J.

Leal-Junior, A.

Li, Y.

Liao, Q.

Lindvold, L.

Liu, Z.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Lohse, D. J.

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

Luo, Y.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Lwin, R.

Manos, S.

Markos, C.

Marques, C. A. F.

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804–815 (2018).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

McPhedran, R.

Mehta, N.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Mergo, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Nicorovici, N. A.

Nielsen, K.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Pedersen, L.

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

Peng, G. D.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Peng, G.-D.

W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
[Crossref]

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Peters, K.

K. Peters, “Polymer optical fiber sensors — a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Planken, P. C. M.

Poladian, L.

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

Pontes, M. J.

Pospori, A.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Qiu, W.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Rasmussen, H. K.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

H. K. Rasmussen and Q. Huang, “Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts,” Rheol. Acta 53(3), 199–208 (2014).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
[Crossref]

A. Bach, H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the filament stretching rheometer,” J. Rheol. (N.Y.N.Y.) 47(2), 429–441 (2003).
[Crossref]

Richter, D.

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

Robbins, M. O.

J. Rottler and M. O. Robbins, “Yield conditions for deformation of amorphous polymer glasses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051801 (2001).
[Crossref] [PubMed]

Rottler, J.

J. Rottler and M. O. Robbins, “Yield conditions for deformation of amorphous polymer glasses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051801 (2001).
[Crossref] [PubMed]

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Shan, D.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Srivastava, V.

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
[Crossref]

Stajanca, P.

Stefani, A.

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for hightemperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Tanner, R. I.

Theodosiou, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

Toinen, C.

D. Bosc and C. Toinen, “Tensile mechanical properties and reduced internal stresses of polymer optical fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

van Eijkelenborg, M.

Vollertsen, F.

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Wang, Q.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Wang, T.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Webb, D. J.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Welker, D. J.

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

Witten, T. A.

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

Woyessa, G.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xue, S. C.

Yang, J.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Zagari, J.

Zhang, C.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Zhang, Q.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Zhang, W.

W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
[Crossref]

Zhao, M.

Zhong, N.

Zhu, B.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Zhu, X.

Zirkel, A.

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

Zou, G.

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Biomaterials (1)

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Electron. Lett. (1)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

IEEE Photonic. Tech. Lett. (1)

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonic. Tech. Lett. 27(7), 693–696 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Zhang, A. Abang, D. J. Webb, and G.-D. Peng, “Wavelength Drift of PMMA-Based Optical Fiber Bragg Grating Induced by Optical Absorption,” IEEE Photonics Technol. Lett. 27(4), 336–339 (2015).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

IEEE Sens. J. (2)

U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
[Crossref]

A. Stefani, W. Yuan, S. Andresen, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

Int. J. Plast. (1)

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, “A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition,” Int. J. Plast. 26(8), 1138–1182 (2010).
[Crossref]

J. Appl. Phys. (2)

N. Lagakos, J. Jarzynski, J. H. Cole, and J. A. Bucaro, “Frequency and temperature dependence of elastic moduli of polymers,” J. Appl. Phys. 59(12), 4017–4031 (1986).
[Crossref]

C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys. 92(1), 4–12 (2002).
[Crossref]

J. Lightwave Technol. (2)

J. Rheol. (N.Y.N.Y.) (1)

A. Bach, H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the filament stretching rheometer,” J. Rheol. (N.Y.N.Y.) 47(2), 429–441 (2003).
[Crossref]

Macromolecules (3)

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties,” Macromolecules 27(17), 4639–4647 (1994).
[Crossref]

A. Bach, K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene,” Macromolecules 36(14), 5174–5179 (2003).
[Crossref]

C. Chui and M. C. Boyce, “Monte Carlo Modeling of Amorphous Polymer Deformation: Evolution of Stress with Strain,” Macromolecules 32(11), 3795–3808 (1999).
[Crossref]

Opt. Commun. (2)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

T. Wang, Q. Wang, Y. Luo, W. Qiu, G.-D. Peng, B. Zhu, Z. Hu, G. Zou, and Q. Zhang, “Enhancing photosensitivity in near UV/vis band by doping 9-vinylanthracene in polymer optical fiber,” Opt. Commun. 307, 5–8 (2013).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (3)

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (4)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Rottler and M. O. Robbins, “Yield conditions for deformation of amorphous polymer glasses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051801 (2001).
[Crossref] [PubMed]

Polym. Compos. (1)

D. Bosc and C. Toinen, “Tensile mechanical properties and reduced internal stresses of polymer optical fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

Procedia Technology (1)

M. Koerdt, S. Kibben, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, and L. Kroll, “Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber,” Procedia Technology 15, 138–146 (2014).
[Crossref]

Rheol. Acta (1)

H. K. Rasmussen and Q. Huang, “Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts,” Rheol. Acta 53(3), 199–208 (2014).
[Crossref]

Sensors (Basel) (2)

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 891 (2017).
[Crossref] [PubMed]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors — a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (13)

M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).

D. J. Webb, “Polymer Fiber Bragg Grating Sensors and Their Application,” in Optical Fiber Sensors: Advanced Techniques and Applications, G. Rajan, ed. (CRC Press, 2015).

M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).

A. Argyros, “Microstructures in Polymer Fibres for Optical Fibres, THz Waveguide, and Fibre-Based Metamaterials,” ISRN Optics, 785162 (2013).

Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments.

Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber.

GEHR GmbH, “Technical Data Sheet – GEHR PMMA®,” http://www.gehrplastics.com/products-and-applications/material/acrylic.html .

TOPAS Advanced Polymers Inc, “Technical data sheet - TOPAS® 8007S-04,” (TOPAS Advanced Polymers Inc., 2017), https://Topas.com/sites/default/files/TDS_8007S-04_e_EU.pdf .

TOPAS Advanced Polymers Inc, “Technical data sheet - TOPAS® 5013S-04,” (TOPAS Advanced Polymers Inc., 2017), https://Topas.com/sites/default/files/TDS_5013S%E2%80%9304_e_EU.pdf .

ZEON corporation, “ZEON Cyclo Olefin Polymer (COP) ZEONEX,” (ZEON corporation 2016), http://www.zeon.co.jp/content/200181690.pdf .

Covestro, “Makrolon LED2245,” (Covestro 2017), file:///C:/Users/hkra/Downloads/Makrolon_LED2245_ISO_en%20(1).pdf.

K. Kalli and D. J. Webb, “Polymer Optical Fiber-Based Sensors,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, ed. (EPFL Press, 2011).

B. Crist, “Yield processes in glassy polymers,” in The Physics of Glassy Polymers, R. N. Haward and R. J. Young, ed. (Springer Science & Business Media, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Engineering stress, σ=F/A (F is the drawing force and A=N/ 1 N 1/ A i is the average cross sectional area of the fiber), as a function of engineering strain, ε=(L L 0 )/ L 0 (Lis the current length of the fibre and L 0 the initial length), for an un-annealed Zeonex fibre. The straining rate ( ε ̇ =dε/dt=(1/ L 0 )dL/dt) is 1.1%/s.
Fig. 2
Fig. 2 Average elastic modulus E, calculated on the whole statistical group of tested fibres. The error bars represent ± one standard deviation. Figure 1. The individual elastic modulus E are calculated from the initial linear slope, σ=Eε, between the engineering stress (σ) and strain (ε) as illustrated in Fig. 1. The straining rate, ε, range from 0.011%/s to 1.1%/s. The elastic modulus (multiplied with a geometrical factor of 0.9856) reported by the manufacturers based on an ISO 527 standard are shown as well.
Fig. 3
Fig. 3 Engineering stress, σ=F/A (F is the drawing force and A=N/ 1 N 1/ A i is the average cross sectional area of the fiber), as a function of engineering strain, ε=(L L 0 )/ L 0 (L is the current length of the fibre and L 0 the initial length) in the elastic region for the un-annealed and annealed POFs strained at different straining rates ( ε ˙ =dε/dt=(1/ L 0 )dL/dt). The un-annealed POFs were strained at rates, ε ˙ , of 011%/s. (green line), 0.11%/s (light blue line) and 1.1%/s (dark blue line). The annealed POFs were strained at a rate, ε ˙ , of 1.1%/s (black line). The error bars represent ± one standard deviation. The red line is the linear elasticity, based on an overall average for the un-annealed fibres. Figure 3(a): Zeonex 480R POFs. Figure 3(b): Topas 5013S-04 POFs. Figure 3(c): Topas 8007S-04 POFs. Figure 3(d): PC Makrolon LED2245 POFs. Figure 3(e): PMMA (GEHR) POFs.
Fig. 4
Fig. 4 Engineering stress, σ=F/A (F is the drawing force and A=N/ 1 N 1/ A i is the average cross sectional area of the fiber), as a function of engineering strain, ε=(L L 0 )/ L 0 (L is the current length of the fibre and L 0 the initial length). These are the full stress-strain curves of the un-annealed and annealed POFs strained at different straining rates. The un-annealed POFs were strained at strained at rates, ε ˙ ( ε ˙ =dε/dt=(1/ L 0 )dL/dt) of 0.011%/s. (green line), 0.11%/s (light blue line) and 1.1%/s (dark blue line). The annealed POFs were strained at a rate of, ε ˙ , of 1.1%/s (black line). The error bars represent ± one standard deviation. The red line is the linear elasticity, E (defined in Fig. 2), based on an overall average for the un-annealed fibres. The curves are all terminated at the lowest (engineering) strain at break values observed in the experiments. The bullets represent the average yield (the first maximum on the stress-strain curve) and break points (final point on the stress-strain curve), based on the average data for the corresponding fibre type. The bullets have the same colour as the corresponding lines. The average yield points have been shown on the as the bullets on the stress strain lines. The average break of the POFs has been shown as the bullets after the stress strain lines. Figure 4(a): Zeonex 480R POFs. Figure 4(b): Topas 8007S-04. Figure 4(c): PC Makrolon LED2245 POFs. Figure 4(d): PMMA (GEHR) POFs.
Fig. 5
Fig. 5 Engineering stress at break for all investigated POFs tested at various conditions. The engineering stress of break is calculated as σ=F/min( A i ) where min( A i ) is the smallest cross-sectional area on the fiber and F is the drawing force. The error bars represent ± one standard deviation. The un-annealed POFs are strained at rates, ε ˙ , of 0.011%/s, 0.11%/s and 1.1%/s while the annealed POFs are strained at 1.1%/s.
Fig. 6
Fig. 6 Corrected Engineering strain at break for all investigated POFs tested at various conditions. The corrected Engineering strain at break are calculated as ε b = ε c A/min( A i )+ ε 0 ( 1A/min( A i ) ). The terminal linear behaviour of the stress-strain curve (illustrated in Fig. 1) has an intersection with the strain axis at ε 0 and strain at break is ε c .  A=N/ 1 N 1/ A i is the average cross sectional area of the fiber and min( A i ) the smallest cross-sectional area on the fiber. The error bars represent ± one standard deviation. The un-annealed POFs are strained at rates, ε ˙ , of 0.011%/s, 0.11%/s and 1.1%/s while the annealed POFs are strained at 1.1%/s.

Tables (1)

Tables Icon

Table 1 Drawing temperature and stress, fibre diameter (before and after annealing), and annealing temperature.

Metrics