Abstract

The optical properties of optical fibers doped with different sizes of PbSe/CdSe core/shell quantum dots (QDs) were theoretically investigated as a function of fiber length, fiber diameter, QD concentration, and pump power. PbSe/CdSe core/shell QD material was confirmed to be a better candidate for the fiber dopant due to enhanced fiber output spectral intensity compared with the performance of plain PbSe QDs. Besides, the stronger size effect depending on fiber size and QD size, and a more obvious Auger recombination effect depending on pump power, were observed for PbSe/CdSe core/shell QD-doped optical fibers. This paper demonstrates a useful method for the emission enhancement of QD-doped optical fibers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber

Hua Wu, Yu Zhang, Long Yan, Yongheng Jiang, Tieqiang Zhang, Yi Feng, Hairong Chu, Yiding Wang, Jun Zhao, and William W. Yu
Opt. Mater. Express 4(9) 1856-1865 (2014)

Laser-annealing-made amplified spontaneous emission of “giant” CdSe/CdS core/shell nanocrystals transferred from bulk-like shell to quantum-confined core

Chen Liao, Kai Fan, Ruilin Xu, Huichao Zhang, Changgui Lu, Yiping Cui, and Jiayu Zhang
Photon. Res. 3(5) 200-205 (2015)

Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots

Lin Dong, Abhilash Sugunan, Jun Hu, Sicheng Zhou, Shanghua Li, Sergei Popov, Muhammet S. Toprak, Ari T. Friberg, and Mamoun Muhammed
Appl. Opt. 52(1) 105-109 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
    [Crossref]
  2. Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
    [Crossref]
  3. C. Cheng, Y. Lin, and J. Yan, “Red shift of photoluminescence spectrum of CdSe/ZnS- quantum-dot doped fiber,” Acta Opt. Sin. 31(4), 0406002 (2011).
    [Crossref]
  4. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
    [Crossref] [PubMed]
  5. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
    [Crossref]
  6. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
    [Crossref]
  7. G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
    [Crossref]
  8. P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
    [Crossref] [PubMed]
  9. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
    [Crossref]
  10. A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots,” Appl. Opt. 52(6), 1317–1324 (2013).
    [Crossref] [PubMed]
  11. R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
    [Crossref]
  12. A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
    [Crossref]
  13. P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
    [Crossref] [PubMed]
  14. H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
    [Crossref]
  15. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quant. 14(5), 1312–1322 (2008).
    [Crossref]
  16. X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
    [Crossref]
  17. X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
    [Crossref]
  18. L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
    [Crossref]
  19. L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
    [Crossref] [PubMed]
  20. C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
    [Crossref]
  21. P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
    [Crossref]
  22. C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277(2), 372–378 (2007).
    [Crossref]
  23. L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
    [Crossref]
  24. L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).
  25. A. Hreibi, F. Gérôme, J. L. Auguste, Y. Zhang, W. W. Yu, and J. M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett. 36(9), 1695–1697 (2011).
    [Crossref] [PubMed]
  26. L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
    [Crossref] [PubMed]
  27. C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
    [Crossref]
  28. C. Cheng, F. Yuan, and X. Y. Cheng, “Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment,” IEEE J. Quantum Electron. 50(11), 882–889 (2014).
    [Crossref]
  29. Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
    [Crossref] [PubMed]
  30. Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
    [Crossref] [PubMed]
  31. Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
    [Crossref] [PubMed]
  32. B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
    [Crossref] [PubMed]
  33. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
    [Crossref] [PubMed]
  34. Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
    [Crossref]
  35. D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
    [Crossref] [PubMed]
  36. Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
    [Crossref] [PubMed]
  37. V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” J. Phys. Chem. B 110(34), 16827–16845 (2006).
    [Crossref] [PubMed]

2018 (1)

L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).

2017 (4)

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

2015 (4)

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

2014 (3)

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

C. Cheng, F. Yuan, and X. Y. Cheng, “Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment,” IEEE J. Quantum Electron. 50(11), 882–889 (2014).
[Crossref]

2013 (2)

C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
[Crossref]

A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots,” Appl. Opt. 52(6), 1317–1324 (2013).
[Crossref] [PubMed]

2011 (7)

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

C. Cheng, Y. Lin, and J. Yan, “Red shift of photoluminescence spectrum of CdSe/ZnS- quantum-dot doped fiber,” Acta Opt. Sin. 31(4), 0406002 (2011).
[Crossref]

A. Hreibi, F. Gérôme, J. L. Auguste, Y. Zhang, W. W. Yu, and J. M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett. 36(9), 1695–1697 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

2010 (2)

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

2009 (3)

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
[Crossref]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

2008 (3)

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quant. 14(5), 1312–1322 (2008).
[Crossref]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
[Crossref]

2007 (2)

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277(2), 372–378 (2007).
[Crossref]

2006 (1)

V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” J. Phys. Chem. B 110(34), 16827–16845 (2006).
[Crossref] [PubMed]

2004 (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

2003 (2)

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

2002 (1)

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

2001 (1)

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Aigle, M.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Allan, G.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Ardakani, A. G.

Askari, A. A.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
[Crossref]

Auguste, J. L.

Bahrampour, A. R.

A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots,” Appl. Opt. 52(6), 1317–1324 (2013).
[Crossref] [PubMed]

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
[Crossref]

Bauer, G.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Blondy, J. M.

Bo, J. F.

C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
[Crossref]

Casson, J. L.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

Chen, Z.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Cheng, C.

C. Cheng, F. Yuan, and X. Y. Cheng, “Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment,” IEEE J. Quantum Electron. 50(11), 882–889 (2014).
[Crossref]

C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
[Crossref]

C. Cheng, Y. Lin, and J. Yan, “Red shift of photoluminescence spectrum of CdSe/ZnS- quantum-dot doped fiber,” Acta Opt. Sin. 31(4), 0406002 (2011).
[Crossref]

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26(11), 1404–1410 (2008).
[Crossref]

C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277(2), 372–378 (2007).
[Crossref]

Cheng, X. Y.

C. Cheng, F. Yuan, and X. Y. Cheng, “Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment,” IEEE J. Quantum Electron. 50(11), 882–889 (2014).
[Crossref]

C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
[Crossref]

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

Chu, H.

Colvin, V. L.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Cui, Q.

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Cui, T.

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

Dai, Q.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

De Geyter, B.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

de Mello Donega, C.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

de Mello Donegá, C.

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Delerue, C.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Dong, G.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Dong, Y.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Dorland, R.

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Evers, W. H.

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Fang, Z.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Farahi, F.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

Feng, Y.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

Gao, W.

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

Geiregat, P.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Gérôme, F.

Grigel, V.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Grodzinska, D.

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Gu, P.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Gu, Z.

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Han, W. T.

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Heiss, W.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Hens, Z.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Hollingsworth, J. A.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

Houtepen, A. J.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Hreibi, A.

Huang, X.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Infante, I.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Ji, C.

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

Jiang, H. L.

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

Jiang, Y.

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Jorge, P.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

Ju, S.

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Justo, Y.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Kang, S.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Kershaw, S. V.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Kim, M. J.

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Klimov, V. I.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” J. Phys. Chem. B 110(34), 16827–16845 (2006).
[Crossref] [PubMed]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Lambert, K.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Li, C.

L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).

Li, R.

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Li, S.

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

Li, X.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Liang, J.

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Lin, A.

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Lin, Y.

C. Cheng, Y. Lin, and J. Yan, “Red shift of photoluminescence spectrum of CdSe/ZnS- quantum-dot doped fiber,” Acta Opt. Sin. 31(4), 0406002 (2011).
[Crossref]

Liu, M.

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Luo, Y.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Lww, B. H.

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Ma, D. W.

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

Ma, Z.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Mahdavi, S. M.

Martins, M. A.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

Meijerink, A.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Moreels, I.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Ning, L.

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

Pang, F.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Pascher, H.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Pellegrino, D. J.

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Peng, G.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Peng, W.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

Petruska, M. A.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Pietryga, J. M.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

Qiu, J.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Rahimi, L.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
[Crossref]

Richards, B. S.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quant. 14(5), 1312–1322 (2008).
[Crossref]

Rogach, A. L.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Rooholamini, H.

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
[Crossref]

Rowan, B. C.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quant. 14(5), 1312–1322 (2008).
[Crossref]

Sagar, L. K.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Santos, J. L.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

Schaller, R. D.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Schwarzl, T.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Seo, J.

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Shang, Y.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Shen, X.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

Smet, P. F.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Springholz, G.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Sun, M.

L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).

Trindade, T.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

van Huis, M. A.

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

van Rijssel, J.

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Van Thourhout, D.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Vanmaekelbergh, D.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Vavra, I.

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Wang, P.

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

Wang, T.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Wang, Y.

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Watekar, P. R.

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

Wen, J.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Werder, D. J.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

Williams, D. J.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

Wilson, L. R.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quant. 14(5), 1312–1322 (2008).
[Crossref]

Wu, H.

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

Yan, J.

C. Cheng, Y. Lin, and J. Yan, “Red shift of photoluminescence spectrum of CdSe/ZnS- quantum-dot doped fiber,” Acta Opt. Sin. 31(4), 0406002 (2011).
[Crossref]

Yan, J. H.

C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
[Crossref]

Yan, L.

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

Yin, J.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

Yu, W. W.

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

A. Hreibi, F. Gérôme, J. L. Auguste, Y. Zhang, W. W. Yu, and J. M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett. 36(9), 1695–1697 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

Yuan, F.

C. Cheng, F. Yuan, and X. Y. Cheng, “Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment,” IEEE J. Quantum Electron. 50(11), 882–889 (2014).
[Crossref]

Zapata, F.

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Zhan, H.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

Zhang, B.

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

Zhang, H.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277(2), 372–378 (2007).
[Crossref]

Zhang, L.

L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Zhang, T.

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Zhang, X.

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

Zhang, Y.

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

A. Hreibi, F. Gérôme, J. L. Auguste, Y. Zhang, W. W. Yu, and J. M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett. 36(9), 1695–1697 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Zhao, J.

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

H. Wu, Y. Zhang, L. Yan, Y. Jiang, T. Zhang, Y. Feng, H. Chu, Y. Wang, J. Zhao, and W. W. Yu, “Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber,” Opt. Mater. Express 4(9), 1856–1865 (2014).
[Crossref]

Zhao, M.

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Zhao, Y.

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

Zheng, Y.

L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

Zhou, B.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Zhou, S.

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

Zou, B.

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

ACS Nano (2)

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano 3(6), 1518–1524 (2009).
[Crossref] [PubMed]

Acta Opt. Sin. (1)

C. Cheng, Y. Lin, and J. Yan, “Red shift of photoluminescence spectrum of CdSe/ZnS- quantum-dot doped fiber,” Acta Opt. Sin. 31(4), 0406002 (2011).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett. 79(9), 1225–1227 (2001).
[Crossref]

Chem. Mater. (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Cheng, F. Yuan, and X. Y. Cheng, “Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment,” IEEE J. Quantum Electron. 50(11), 882–889 (2014).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quant. 14(5), 1312–1322 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Cheng, J. F. Bo, J. H. Yan, and X. Y. Cheng, “Experimental realization of a PbSe-quantum-dot doped fiber laser,” IEEE Photonics Technol. Lett. 25(6), 572–575 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130(14), 4879–4885 (2008).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Lumin. (1)

Y. Shang, J. Wen, Y. Dong, H. Zhan, Y. Luo, G. Peng, X. Zhang, F. Pang, Z. Chen, and T. Wang, “Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition,” J. Lumin. 187, 201–204 (2017).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhao, and W. W. Yu, “High photocurrent PbSe solar cells with thin active layers,” J. Mater. Chem. A Mater. Energy Sustain. 3(16), 8501–8507 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Huang, Z. Fang, S. Kang, W. Peng, G. Dong, B. Zhou, Z. Ma, S. Zhou, and J. Qiu, “Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(31), 7927–7934 (2017).
[Crossref]

J. Nanopart. Res. (1)

Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res. 13(9), 3721–3729 (2011).
[Crossref]

J. Nanophoton. (1)

L. Zhang, M. Sun, C. Li, and Y. Zheng, “Effect of pump parameters on the emission of PbSe quantum dot-doped optical fiber considering Auger recombination,” J. Nanophoton. 12(2),026010 1–9 (2018).

J. Non-Cryst. Solids (1)

P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lww, and W. T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010).
[Crossref]

J. Phys. Chem. B (2)

V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” J. Phys. Chem. B 110(34), 16827–16845 (2006).
[Crossref] [PubMed]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Langmuir (2)

Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir 27(15), 9583–9587 (2011).
[Crossref] [PubMed]

Q. Dai, Y. Wang, Y. Zhang, X. Li, R. Li, B. Zou, J. Seo, Y. Wang, M. Liu, and W. W. Yu, “Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure,” Langmuir 25(20), 12320–12324 (2009).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett. 5(8), 1279–1283 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology 25(10), 105704 (2014).
[Crossref] [PubMed]

L. Yan, Y. Zhang, X. Zhang, J. Zhao, Y. Wang, T. Zhang, Y. Jiang, W. Gao, J. Yin, J. Zhao, and W. W. Yu, “Single layer graphene electrodes for quantum dot-light emitting diodes,” Nanotechnology 26(13), 135201 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots,” Nat. Mater. 17(1), 35–42 (2017).
[Crossref] [PubMed]

Opt. Commun. (4)

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284(19), 4491–4495 (2011).
[Crossref]

C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277(2), 372–378 (2007).
[Crossref]

L. Zhang, B. Zhang, L. Ning, S. Li, and Y. Zheng, “Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber,” Opt. Commun. 383, 371–377 (2017).
[Crossref]

A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282(22), 4449–4454 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

RSC Advances (2)

L. Yan, X. Shen, Y. Zhang, T. Zhang, X. Zhang, Y. Feng, J. Yin, J. Zhao, and W. W. Yu, “Near-infrared light emitting diodes using PbSe quantum dots,” RSC Advances 5(67), 54109–54114 (2015).
[Crossref]

X. Zhang, Y. Zhang, L. Yan, H. Wu, W. Gao, J. Zhao, and W. W. Yu, “PbSe nanocrystal solar cells using bandgap engineering,” RSC Advances 5(80), 65569–65574 (2015).
[Crossref]

Sensors (Basel) (1)

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel) 7(12), 3489–3534 (2007).
[Crossref] [PubMed]

Small (1)

D. Grodzińska, W. H. Evers, R. Dorland, J. van Rijssel, M. A. van Huis, A. Meijerink, C. de Mello Donegá, and D. Vanmaekelbergh, “Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots,” Small 7(24), 3493–3501 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The electron transition and exciton recombination process of three-level system for PbSe/CdSe QDs [23]. (b) Structure diagram of QD-doped optical fiber.
Fig. 2
Fig. 2 Abs and PL spectra of (a) 3.7 nm PbSe QDs (sample 1), (b) 3.7 nm PbSe/CdSe core/shell QDs with a core size of 3.2 nm (sample 2), and (c) 4.2 nm PbSe/CdSe core/shell QDs with a core size of 2.1 nm (sample 3) [35]. Also shown here are correspondingly calculated Stokes shift (d), fluorescence lifetime (e) and absorption cross section (f) of the three samples.
Fig. 3
Fig. 3 Emission spectra of sample 1 (a), sample 2 (b) and sample 3 (c) doped optical fibers with different fiber lengths. Also shown here are correspondingly calculated optimized emission intensity (d), red-shift of the optimal emission spectrum relative to the PL spectrum (e) and optimal fiber length for emission intensity (f). “1, 2, and 3” labeled on the axis represent optical fibers doped with sample 1, sample 2 and sample 3, respectively.
Fig. 4
Fig. 4 Evolution of emission intensity and peak position of spectra with fiber length when fiber diameters are 20, 40, 60, 80, 100 and 120 µm for sample 3 and sample 1 -doped optical fibers. The dots are calculated data and the lines are polynomial fitting lines for comparison. Star symbols represent experimental data [26] performed under a fiber diameter of 100 µm, doping concentration of 7.2 × 1021 /m3 and pump wavelength of 532 nm.
Fig. 5
Fig. 5 Evolution of the intensity (a) and peak position (b) of the emission spectra with doping concentration for sample 3 (black square) and sample 1 (red circle)- doped optical fibers.
Fig. 6
Fig. 6 Evolution of the intensity of emission spectra with pump power for sample 3 (black square) and sample 1 (red circle) -doped optical fibers.

Tables (1)

Tables Icon

Table 1 Optical properties of three samples [35]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d n 1 dt =( W 13 + W 12 ) n 1 +( W 21 + A 21 + A 21 NR ) n 2
d n 2 dt = W 12 n 1 ( W 21 + A 21 + A 21 NR ) n 2 + A 32 NR n 3
d n 3 dt = W 13 n 1 A 32 NR n 3
n t = n 1 + n 2 +n 3
d P λ s ( z ) dz = σ e ( λ s ) 0 R i s ( r ) n 2 ( r,z )[ P λ s ( z )+mh ν s Δ ν s ]2πrdr σ a ( λ s ) 0 R i s ( r ) n 1 ( r,z ) P λ s ( z )2πrdr l ν P λ s ( z )
d P p ( z ) dz = σ a ( λ p ) 0 R i p ( r ) n 1 ( r,z ) P p ( z )2πrdr l ν P p ( z )
P s ( λ )= j=1 M P s ( r j ,λ ) = P s ( r 1 ) [ J 0 ( V 1 ) ] 2 j=1 M [ J 0 ( V j ) ] 2
M= 4 R 2 λ 2 ( n core 2 n clad 2 )
τ NR = ( C A n eh 2 ) 1 = ( C A N 2 V 2 ) 1
τ NR = 16 π 2 72β D 3 σ a 2 1 j p 2 =k 1 j p 2

Metrics