Abstract

5G mobile communication is developing at a faster-than-expected pace, especially in the mid-frequency band (so-called sub-6G band). This paper presents a transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication. A sandwich-structured metamaterial absorber (MMA) was designed and tested. The transparent and conductive material Indium Tin Oxide (ITO) was used for the surface resonant structures and the backplane ground layer; and polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS) were used as the dielectric layer, separately, both are transparent and flexible. The absorber featured >80% broadband absorption, covering a wide frequency range of (3.0~10.0) GHz for PET dielectric layer, and (3.2~11.0) GHz for PET-PDMS-PET dielectric layer. The thickness of the absorber made of the latter was 6.25 mm only (0.067 times of the wavelength corresponding to the lowest absorption frequency). With additional advantages of excellent flexibility and transparency, the MMA perfectly covers the frequency bands of the sub-6G band and can play an active role in the 5G communication in the near future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure

Senfeng Lai, Yanghui Wu, Junjie Wang, Wen Wu, and Wenhua Gu
Opt. Mater. Express 8(6) 1585-1592 (2018)

Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

Transparently curved metamaterial with broadband millimeter wave absorption

Cheng Zhang, Jin Yang, Wenkang Cao, Wei Yuan, Junchen Ke, Liuxi Yang, Qiang Cheng, and Tiejun Cui
Photon. Res. 7(4) 478-485 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
    [Crossref]
  2. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
    [Crossref]
  3. Salisbury, “Absorbent body for electromagnetic waves” US Patent, 2,599: 944(1952).
  4. K. Takizawa and O. Hashimoto, “Transparent Wave Absorber Using Resistive Thin Film at-Band Frequency”, IEEE. Trans. Microw. Theory 47(7), 1137–1141 (1999).
    [Crossref]
  5. M. Haruta, K. Wada, and O. Hashimoto, “Wideband wave absorber at X frequency band using transparent resistive film,” Microw. Opt. Technol. Lett. 24(4), 223–226 (2000).
    [Crossref]
  6. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
    [PubMed]
  7. M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Optically transparent microwave screens based on engineered graphene layers,” Opt. Express 24(20), 22788–22795 (2016).
    [Crossref] [PubMed]
  8. R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
    [Crossref] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A Metamaterial Absorber for the Terahertz Regime: Design, Fabrication and Characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  11. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple Band Polarization-Independent Metamaterial Absorber with Bandwidth Enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
    [Crossref]
  12. F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
    [Crossref]
  13. X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
    [Crossref]
  14. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).
  15. I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
    [Crossref]
  16. S. Lai, Y. Wu, J. Wang, W. Wu, and W. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585 (2018).
    [Crossref]
  17. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
    [Crossref]
  18. R. C. Pullar, “A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci. 57(7), 1191–1334 (2012).
    [Crossref]
  19. S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
    [Crossref]
  20. D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 322 (2016).
    [Crossref]
  21. D. Yi, X. Wei, and Y. Xu, “Transparent Microwave Absorber Based on Patterned Graphene: Design, Measurement, and Enhancement”, IEEE. T. Nanotechnology 16(3), 484–490 (2017).
  22. H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
    [Crossref]

2018 (3)

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

S. Lai, Y. Wu, J. Wang, W. Wu, and W. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585 (2018).
[Crossref]

2017 (3)

S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

D. Yi, X. Wei, and Y. Xu, “Transparent Microwave Absorber Based on Patterned Graphene: Design, Measurement, and Enhancement”, IEEE. T. Nanotechnology 16(3), 484–490 (2017).

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

2016 (4)

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 322 (2016).
[Crossref]

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Optically transparent microwave screens based on engineered graphene layers,” Opt. Express 24(20), 22788–22795 (2016).
[Crossref] [PubMed]

I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
[Crossref]

2014 (4)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

2013 (2)

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple Band Polarization-Independent Metamaterial Absorber with Bandwidth Enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
[Crossref]

2012 (1)

R. C. Pullar, “A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci. 57(7), 1191–1334 (2012).
[Crossref]

2008 (2)

2000 (1)

M. Haruta, K. Wada, and O. Hashimoto, “Wideband wave absorber at X frequency band using transparent resistive film,” Microw. Opt. Technol. Lett. 24(4), 223–226 (2000).
[Crossref]

1999 (1)

K. Takizawa and O. Hashimoto, “Transparent Wave Absorber Using Resistive Thin Film at-Band Frequency”, IEEE. Trans. Microw. Theory 47(7), 1137–1141 (1999).
[Crossref]

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Aryanfar, F.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Averitt, R. D.

Bhattacharyya, S.

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple Band Polarization-Independent Metamaterial Absorber with Bandwidth Enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Bianco, G. V.

Bingham, C. M.

Bruno, G.

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Capezzuto, P.

Cheun, K.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Cho, J.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

D’Orazio, A.

de Ceglia, D.

Deng, R.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Dincer, F.

F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
[Crossref]

Ghosh, S.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple Band Polarization-Independent Metamaterial Absorber with Bandwidth Enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Grande, M.

Gu, W.

S. Lai, Y. Wu, J. Wang, W. Wu, and W. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585 (2018).
[Crossref]

S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).

Hanly, S. V.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Haruta, M.

M. Haruta, K. Wada, and O. Hashimoto, “Wideband wave absorber at X frequency band using transparent resistive film,” Microw. Opt. Technol. Lett. 24(4), 223–226 (2000).
[Crossref]

Hashimoto, O.

M. Haruta, K. Wada, and O. Hashimoto, “Wideband wave absorber at X frequency band using transparent resistive film,” Microw. Opt. Technol. Lett. 24(4), 223–226 (2000).
[Crossref]

K. Takizawa and O. Hashimoto, “Transparent Wave Absorber Using Resistive Thin Film at-Band Frequency”, IEEE. Trans. Microw. Theory 47(7), 1137–1141 (1999).
[Crossref]

Hong, I. P.

I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
[Crossref]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).

Karaaslan, M.

F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
[Crossref]

Kim, Y.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Kong, L. B.

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

Lai, S.

S. Lai, Y. Wu, J. Wang, W. Wu, and W. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585 (2018).
[Crossref]

S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Landy, N. I.

Lee, B.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Lee, I. G.

I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
[Crossref]

Lee, J.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Lee, J. S.

I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
[Crossref]

Li, M.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Li, X.

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

Liu, P.

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Muneer, B.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Padilla, W. J.

Park, J. H.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Petruzzelli, V.

Pullar, R. C.

R. C. Pullar, “A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci. 57(7), 1191–1334 (2012).
[Crossref]

Ramakrishna, S. A.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

Ramkumar, J.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

Roberts, R. C.

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

Roh, W.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Sabah, C.

F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
[Crossref]

Saikia, M.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Scalora, M.

Seol, J.

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Sheokand, H.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

Shi, Z.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).

Singh, G.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, L.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Sood, D.

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 322 (2016).
[Crossref]

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Srivastava, K. V.

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple Band Polarization-Independent Metamaterial Absorber with Bandwidth Enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Takizawa, K.

K. Takizawa and O. Hashimoto, “Transparent Wave Absorber Using Resistive Thin Film at-Band Frequency”, IEEE. Trans. Microw. Theory 47(7), 1137–1141 (1999).
[Crossref]

Tao, H.

Tian, J.

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

Tripathi, C. C.

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 322 (2016).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Unal, E.

F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
[Crossref]

Vincenti, M. A.

Wada, K.

M. Haruta, K. Wada, and O. Hashimoto, “Wideband wave absorber at X frequency band using transparent resistive film,” Microw. Opt. Technol. Lett. 24(4), 223–226 (2000).
[Crossref]

Wang, J.

Wei, X.

D. Yi, X. Wei, and Y. Xu, “Transparent Microwave Absorber Based on Patterned Graphene: Design, Measurement, and Enhancement”, IEEE. T. Nanotechnology 16(3), 484–490 (2017).

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Wu, W.

S. Lai, Y. Wu, J. Wang, W. Wu, and W. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585 (2018).
[Crossref]

S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Wu, X.

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

Wu, Y.

S. Lai, Y. Wu, J. Wang, W. Wu, and W. Gu, “Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure,” Opt. Mater. Express 8(6), 1585 (2018).
[Crossref]

S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Xu, Y.

D. Yi, X. Wei, and Y. Xu, “Transparent Microwave Absorber Based on Patterned Graphene: Design, Measurement, and Enhancement”, IEEE. T. Nanotechnology 16(3), 484–490 (2017).

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Yang, Z.

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

Yao, Z.

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

Yeung, K.

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

Yi, D.

D. Yi, X. Wei, and Y. Xu, “Transparent Microwave Absorber Based on Patterned Graphene: Design, Measurement, and Enhancement”, IEEE. T. Nanotechnology 16(3), 484–490 (2017).

Yoon, S. H.

I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
[Crossref]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

Zhang, T.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Zhang, X.

Zhou, J.

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

Zhu, Q.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett. 112(10), 103505 (2018).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 322 (2016).
[Crossref]

Electron. Lett. (1)

I. G. Lee, S. H. Yoon, J. S. Lee, and I. P. Hong, “Design of wideband radar absorbing material with improved optical transmittance by using printed metal-mesh,” Electron. Lett. 52(7), 555–557 (2016).
[Crossref]

IEEE Commun. Mag. (1)

W. Roh, J. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

IEEE Photonics J. (1)

S. Lai, Y. Wu, W. Wu, and W. Gu, “An Optically Transparent Ultrabroadband Microwave Absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

IEEE. J. Sel. Area. Comm (1)

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE. J. Sel. Area. Comm 32(6), 1065–1082 (2014).
[Crossref]

IEEE. T. Nanotechnology (1)

D. Yi, X. Wei, and Y. Xu, “Transparent Microwave Absorber Based on Patterned Graphene: Design, Measurement, and Enhancement”, IEEE. T. Nanotechnology 16(3), 484–490 (2017).

IEEE. Trans. Microw. Theory (1)

K. Takizawa and O. Hashimoto, “Transparent Wave Absorber Using Resistive Thin Film at-Band Frequency”, IEEE. Trans. Microw. Theory 47(7), 1137–1141 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” J. Am. Chem. Soc. 1, 279–284 (2014).

J. Appl. Phys. (2)

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple Band Polarization-Independent Metamaterial Absorber with Bandwidth Enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, “Transparent broadband metamaterial absorber based on resistive films,” J. Appl. Phys. 122(10), 105105 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. Liu, Z. Yao, J. Zhou, Z. Yang, and L. B. Kong, “Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(41), 9738–9749 (2016).
[Crossref]

Materials (Basel) (1)

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Microw. Opt. Technol. Lett. (1)

M. Haruta, K. Wada, and O. Hashimoto, “Wideband wave absorber at X frequency band using transparent resistive film,” Microw. Opt. Technol. Lett. 24(4), 223–226 (2000).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, “Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resonator and Octa-Starstrip Configuration,” Prog. Electromagnetics Res. 141, 219–231 (2013).
[Crossref]

Prog. Mater. Sci. (1)

R. C. Pullar, “A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci. 57(7), 1191–1334 (2012).
[Crossref]

Sci. Rep. (1)

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(4130), 4130 (2014).
[PubMed]

Other (1)

Salisbury, “Absorbent body for electromagnetic waves” US Patent, 2,599: 944(1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the structure of the broadband microwave MMA
Fig. 2
Fig. 2 (a) Comparison of the simulation and experiment results of the MMA using PET as the medium layer. (b) Picture of the PET-medium MMA on top of a piece of paper printed with the university name and logo.
Fig. 3
Fig. 3 The surface electric field (a-c) and surface current density (d-f) distribution profiles at the three absorption peaks of the MMA using PET as the medium layer.
Fig. 4
Fig. 4 (a) Comparison of the simulation and experiment results of the MMA using PET-PDMS-PET as the medium layer. (b) Picture of the transparent PET-PDMS-PET-medium MMA bent by hand. (c-e) Surface electric field and (f-h) current density distribution profiles at the three absorption peaks of the MMA using PET-PDMS-PET as the medium layer.
Fig. 5
Fig. 5 (a) The measured absorption curve (red) when the MMA sample was bent at a curvature radius of r = 10 cm, compared to the no-bending absorption curve (black). (b) Simulated absorption curves at different incident angles when the MMA sample is flat.
Fig. 6
Fig. 6 (a) Comparison of the absorption spectra for the MMAs using PDMS and PET as the dielectric layer. (b) Comparison of the optical transmission spectra of the MMAs using PDMS and PET as the dielectric layer.

Tables (1)

Tables Icon

Table 1 The relative bandwidth and the relative thickness of different microwave MMAs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = 1 R ( ω ) T ( ω )
A ( ω ) = 1 | S 11 | 2

Metrics