Abstract

In this paper, we present a rapid approach for synthesizing highly efficient emitting K2TiF6:Mn4+ red phosphors by ball milling. K2TiF6:Mn4+ can be obtained via cation exchange by reacting K2TiF6 and KMnO4. The synthesized time is reduced to 15 min, which is 5 times as fast as that of the simple chemical method, but the photoluminescence intensity of the obtained K2TiF6:Mn4+ increases by 34.6%. With the increase of the milling speed, the size of phosphor decreases, but the reaction of Ti4+ substituted by Mn4+ in K2TiF6 is accelerated. This is a new approach for preparing luminescent Mn4+-doped fluoride phosphors.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives

Heleen F. Sijbom, Reinert Verstraete, Jonas J. Joos, Dirk Poelman, and Philippe F. Smet
Opt. Mater. Express 7(9) 3332-3365 (2017)

Single-phase tunable white-light-emitting Sr3 La(PO4)3 : Eu2+, Mn2+ phosphor for white LEDs

Zhijun Wang, Shuqin Lou, Panlai Li, and Zhenggang Lian
Appl. Opt. 56(4) 1167-1172 (2017)

Optical characteristics and longevity of the line-emitting K2SiF6:Mn4+ phosphor for LED application

Ji Wook Moon, Bong Gul Min, Jin Sung Kim, Myoung Su Jang, Kang Min Ok, Kwan-Young Han, and Jae Soo Yoo
Opt. Mater. Express 6(3) 782-792 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
    [PubMed]
  2. S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
  3. P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
    [PubMed]
  4. H. F. Sijbom, R. Verstraete, J. J. Joos, D. Poelman, and P. F. Smet, “K2SiF6:Mn4+ as a red phosphor for displays and warm-white leds: a review of properties and perspectives,” Opt. Mater. Express 7(9), 3332–3365 (2017).
  5. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).
  6. L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
    [PubMed]
  7. P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).
  8. E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
    [PubMed]
  9. T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).
  10. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).
  11. X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).
  12. L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).
  13. J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).
  14. A. Sadao and T. Takahashi, “Direct synthesis of K2SiF6: Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid St. 12(2), J20–J23 (2009).
  15. Y. Arai and S. Adachi, “Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors,” J. Lumin. 131, 2652–2660 (2011).
  16. Y. Arai, T. Takahashi, and S. Adachi, “Photoluminescent properties of K2SnF6·H2O:Mn4+ red phosphor,” Opt. Mater. 32, 1095–1101 (2010).
  17. T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320, 514–518 (2014).
  18. T. Takahashi and S. Adachi, “Mn4+ -activated red photoluminescence in K2SiF6 phosphor,” J. Electrochem. Soc. 155, E183–E188 (2008).
  19. J. Meyer and F. Tappe, “Solid‐State Lighting: Photoluminescent materials for solid-state lighting: state of the art and future challenges,” Adv. Opt. Mater. 3, 423 (2015).
  20. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
    [PubMed]
  21. A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).
  22. K. X. Yan and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158, J58 (2011).
  23. T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).
  24. T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).
  25. T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).
  26. T. C. Lang, T. Han, L. L. Peng, and M. J. Tu, “Luminescence properties of Na2SiF6:Mn4+ red phosphors for high colour-rendering white LED applications synthesized via a simple exothermic reduction reaction,” Mater. Chem. Frontiers, 1, 928–932 (2017).
  27. Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
  28. Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).
  29. X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).
  30. X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).
  31. X. Zhao, H. Chen, M. A. Qin, X. U. Ke, “Effects of ball milling techniques on characteristics of Al2O3/Mo5Si3 composite powder by mechanical alloying,” Powder Metall. Ind. 2, 4 (2011).
  32. H. D. Nguyen and R. S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 10759–10775 (2016).
  33. L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

2017 (3)

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[PubMed]

H. F. Sijbom, R. Verstraete, J. J. Joos, D. Poelman, and P. F. Smet, “K2SiF6:Mn4+ as a red phosphor for displays and warm-white leds: a review of properties and perspectives,” Opt. Mater. Express 7(9), 3332–3365 (2017).

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

2016 (3)

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

H. D. Nguyen and R. S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 10759–10775 (2016).

L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

2015 (5)

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

J. Meyer and F. Tappe, “Solid‐State Lighting: Photoluminescent materials for solid-state lighting: state of the art and future challenges,” Adv. Opt. Mater. 3, 423 (2015).

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).

2014 (8)

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320, 514–518 (2014).

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

2012 (1)

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

2011 (3)

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[PubMed]

Y. Arai and S. Adachi, “Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors,” J. Lumin. 131, 2652–2660 (2011).

K. X. Yan and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158, J58 (2011).

2010 (2)

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Y. Arai, T. Takahashi, and S. Adachi, “Photoluminescent properties of K2SnF6·H2O:Mn4+ red phosphor,” Opt. Mater. 32, 1095–1101 (2010).

2009 (3)

A. Sadao and T. Takahashi, “Direct synthesis of K2SiF6: Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid St. 12(2), J20–J23 (2009).

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

2008 (1)

T. Takahashi and S. Adachi, “Mn4+ -activated red photoluminescence in K2SiF6 phosphor,” J. Electrochem. Soc. 155, E183–E188 (2008).

2007 (1)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

2000 (1)

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Adachi, S.

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320, 514–518 (2014).

K. X. Yan and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158, J58 (2011).

Y. Arai and S. Adachi, “Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors,” J. Lumin. 131, 2652–2660 (2011).

Y. Arai, T. Takahashi, and S. Adachi, “Photoluminescent properties of K2SnF6·H2O:Mn4+ red phosphor,” Opt. Mater. 32, 1095–1101 (2010).

T. Takahashi and S. Adachi, “Mn4+ -activated red photoluminescence in K2SiF6 phosphor,” J. Electrochem. Soc. 155, E183–E188 (2008).

Aesram, D.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Arai, Y.

Y. Arai and S. Adachi, “Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors,” J. Lumin. 131, 2652–2660 (2011).

Y. Arai, T. Takahashi, and S. Adachi, “Photoluminescent properties of K2SnF6·H2O:Mn4+ red phosphor,” Opt. Mater. 32, 1095–1101 (2010).

Bos, A. J.

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Chang-Lin, L. I.

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

Chen, G.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Chen, X.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Chen, X. A.

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

Cui, S.

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Denbaars, S. P.

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).

Deshpande, A.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Do, Y.

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

Dorenbos, P.

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

Eeckhout, K. V.

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

Eo, Y.

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

Fu, X.

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Fu, Z.

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Gao, H. J.

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

Guan, Y.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Han, J. B.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

Han, T.

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

Hanzawa, H.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

Henderson, C. S.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Her, J. H.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Horikawa, T.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

Hou, L.

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Huang, S.

L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

Isobe, M.

T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

Jeong, J. H.

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Jiang, F.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Jiang, X.

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

Joos, J. J.

Kang, H.

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

Karkada, N.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Kijima, N.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

Kishore, M. S.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Kolk, E. V.

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Kumagai, T.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

Kumar, N. P.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Lang, T.

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[PubMed]

Liu, G.

L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

Liu, J.

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

Liu, R. S.

H. D. Nguyen and R. S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 10759–10775 (2016).

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[PubMed]

Liu, W.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Liu, Z. X.

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

Lu, T.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Lu, Z.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Lv, L.

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

Ma, B.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Machida, K.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

Meyer, J.

J. Meyer and F. Tappe, “Solid‐State Lighting: Photoluminescent materials for solid-state lighting: state of the art and future challenges,” Adv. Opt. Mater. 3, 423 (2015).

Molins, E.

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Moon, B. K.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Nakajima, T.

T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).

Nakamura, T.

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320, 514–518 (2014).

Nguyen, H. D.

H. D. Nguyen and R. S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 10759–10775 (2016).

Núñez, P.

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Oh, J.

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

Pan, Y.

L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

Park, H.

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

Park, J. Y.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Pavitra, E.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Peng, J. H.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Peng, L.

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

Piao, X.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).

Poelman, D.

Radkov, E. V.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Raju, G. S. R.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Rodríguez-Carvajal, J.

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Roisnel, T.

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Sadao, A.

A. Sadao and T. Takahashi, “Direct synthesis of K2SiF6: Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid St. 12(2), J20–J23 (2009).

Setlur, A. A.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Shimomura, A. Y.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Sijbom, H. F.

Smet, P. F.

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[PubMed]

H. F. Sijbom, R. Verstraete, J. J. Joos, D. Poelman, and P. F. Smet, “K2SiF6:Mn4+ as a red phosphor for displays and warm-white leds: a review of properties and perspectives,” Opt. Mater. Express 7(9), 3332–3365 (2017).

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).

Srivastava, A. M.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Takahashi, T.

Y. Arai, T. Takahashi, and S. Adachi, “Photoluminescent properties of K2SnF6·H2O:Mn4+ red phosphor,” Opt. Mater. 32, 1095–1101 (2010).

A. Sadao and T. Takahashi, “Direct synthesis of K2SiF6: Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid St. 12(2), J20–J23 (2009).

T. Takahashi and S. Adachi, “Mn4+ -activated red photoluminescence in K2SiF6 phosphor,” J. Electrochem. Soc. 155, E183–E188 (2008).

Tappe, F.

J. Meyer and F. Tappe, “Solid‐State Lighting: Photoluminescent materials for solid-state lighting: state of the art and future challenges,” Adv. Opt. Mater. 3, 423 (2015).

Tressaud, A.

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Tsuchiya, T.

T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

Tu, M.

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

Ueda, Y.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

Uzawa, Y.

T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).

Verstraete, R.

Wang, J.

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

Wang, L.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Wang, X.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

Wang, X. Z.

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

Wang, Z. L.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Wei, N.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Wu, M. M.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Wu, Z.

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Xi, L.

L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

Yan, J.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Yan, K. X.

K. X. Yan and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158, J58 (2011).

Yu, J. S.

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Yuan, Z.

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320, 514–518 (2014).

Zhang, J.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

Zhang, W.

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

Zhong, H.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

Zhong, Z.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

Zhou, Q.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Zhou, Y. Y.

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Adv. Opt. Mater. (1)

J. Meyer and F. Tappe, “Solid‐State Lighting: Photoluminescent materials for solid-state lighting: state of the art and future challenges,” Adv. Opt. Mater. 3, 423 (2015).

Appl. Phys. Lett. (1)

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J. B. Han, “Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).

Appl. Surf. Sci. (1)

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320, 514–518 (2014).

Chem. Mater. (2)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, A. Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19, 4592–4599 (2007).

A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, and A. Deshpande, “Energy-efficient, high-color-rendering led lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22, 4076–4082 (2010).

Dalton Trans. (1)

L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, “Facile template free synthesis of KLa(MoO4)2:Eu3+,Tb3+ microspheres and their multicolor tunable luminescence,” Dalton Trans. 43(14), 5382–5392 (2014).
[PubMed]

Electrochem. Solid St. (1)

A. Sadao and T. Takahashi, “Direct synthesis of K2SiF6: Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid St. 12(2), J20–J23 (2009).

Faguang Xuebao (1)

X. Z. Wang, H. J. Gao, J. Liu, L. I. Chang-Lin, and Z. X. Liu, “Up-conversion for different substrate by ball milling method,” Faguang Xuebao 35, 312–316 (2014).

J. Alloys Compd. (1)

X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, Y. Guan, W. Liu, and F. Jiang, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloys Compd. 589, 448–454 (2014).

J. Electrochem. Soc. (2)

K. X. Yan and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158, J58 (2011).

T. Takahashi and S. Adachi, “Mn4+ -activated red photoluminescence in K2SiF6 phosphor,” J. Electrochem. Soc. 155, E183–E188 (2008).

J. Lumin. (3)

Y. Arai and S. Adachi, “Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors,” J. Lumin. 131, 2652–2660 (2011).

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3(A:K, Rb and Cs) and M3V2O8(M:Mg and Zn),” J. Lumin. 129, 1598–1601 (2009).

P. F. Smet, K. V. Eeckhout, A. J. Bos, E. V. Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8: Eu (M= Ca, Sr, Ba) persistent phosphors,” J. Lumin. 132(3), 682–689 (2012).

J. Mater. Chem. C Mater. Opt. Electron. Devices (6)

X. Jiang, Y. Pan, S. Huang, X. A. Chen, J. Wang, and G. Liu, “Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 2301–2306 (2014).

L. Lv, X. Jiang, S. Huang, X. A. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 3879–3884 (2014).

J. Oh, H. Kang, Y. Eo, H. Park, and Y. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 607–615 (2014).

T. Nakajima, M. Isobe, Y. Uzawa, and T. Tsuchiya, “Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 10748–10754 (2015).

Q. Zhou, Y. Y. Zhou, Z. L. Wang, G. Chen, J. H. Peng, J. Yan, and M. M. Wu, “A new and efficient red phosphor for solid-state lighting: Cs2TiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(37), 9615–9619 (2015).

H. D. Nguyen and R. S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 10759–10775 (2016).

J. Phys. Chem. Lett. (1)

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[PubMed]

J. Solid State Chem. (1)

T. Roisnel, P. Núñez, A. Tressaud, E. Molins, and J. Rodríguez-Carvajal, “Investigation of K2MnF5·H2O by neutron diffraction,” J. Solid State Chem. 150, 104–111 (2000).

Mater. Chem. Phys. (1)

T. Han, J. Wang, T. Lang, M. Tu, and L. Peng, “K2MnF5·H2O as reactant for synthesizing highly efficient red emitting K2TiF6:Mn4+ phosphors by a modified cation exchange approach,” Mater. Chem. Phys. 18, 3230–3237 (2016).

Nat. Commun. (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Nat. Mater. (1)

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[PubMed]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).

Opt. Mater. (1)

Y. Arai, T. Takahashi, and S. Adachi, “Photoluminescent properties of K2SnF6·H2O:Mn4+ red phosphor,” Opt. Mater. 32, 1095–1101 (2010).

Opt. Mater. Express (1)

RSC Advances (1)

L. Xi, Y. Pan, S. Huang, and G. Liu, “Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties,” RSC Advances 6, 76251–76258 (2016).

Rsc. Adv. (1)

T. Han, T. Lang, J. Wang, M. Tu, and L. Peng, “Large micro-sized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes,” Rsc. Adv. 5, 100054 (2015).

Sci. Rep. (1)

E. Pavitra, G. S. R. Raju, J. Y. Park, L. Wang, B. K. Moon, and J. S. Yu, “Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes,” Sci. Rep. 5, 10296 (2015).
[PubMed]

Other (2)

T. C. Lang, T. Han, L. L. Peng, and M. J. Tu, “Luminescence properties of Na2SiF6:Mn4+ red phosphors for high colour-rendering white LED applications synthesized via a simple exothermic reduction reaction,” Mater. Chem. Frontiers, 1, 928–932 (2017).

X. Zhao, H. Chen, M. A. Qin, X. U. Ke, “Effects of ball milling techniques on characteristics of Al2O3/Mo5Si3 composite powder by mechanical alloying,” Powder Metall. Ind. 2, 4 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 XRD patterns of the obtained K2TiF6:Mn4+ phosphors.
Fig. 2
Fig. 2 EDAX spectrum of the as-synthesized K2TiF6:Mn4+ phosphors.
Fig. 3
Fig. 3 SEM images of K2TiF6 powders (a), and sample S30 (b), B100-5 (c) and B200-5 (d).
Fig. 4
Fig. 4 Images of samples S90 (a), B100-5 (b) and B200-5(c) and schematic of the crystal structure of a K2TiF6 unit cell (d).
Fig. 5
Fig. 5 Excitation spectra (λem = 634 nm) (a) and emission spectra (λex = 460 nm) (b) of the synthesized K2TiF6:Mn4+ phosphors.
Fig. 6
Fig. 6 Energy level diagrams of Mn4+.
Fig. 7
Fig. 7 Photoluminescence intensities of the synthesized K2TiF6:Mn4+ phosphors.
Fig. 8
Fig. 8 Schematic diagram of the milling mechanism for synthesizing K2TiF6:Mn4+ phosphors. (a) S10, (b) B100-5, (c) B200-5.

Tables (2)

Tables Icon

Table 1 Synthesis parameters and Mn4+ concentration of the K2TiF6:Mn4+ phosphors

Tables Icon

Table 2 IQE and EQE of the obtained K2TiF6:Mn4+ phosphors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

4MnO 4 + 20HF+ 4F 4MnF 6 2 + 3O 2 + 10 H 2 O.

Metrics