Abstract

This work investigates the near-infrared emission characteristics and energy transfer between erbium and cerium in bismuth glass by the reaction atmosphere process. The Er3+:1.5μm emission can be successfully enhanced by performing a reduction conversion of Ce4+→Ce3+ using a reducing atmosphere. The discrepancies of the energy structure between Ce3+ and Ce4+ result in a contrasting sensitizing effect on Er3+:1.5μm emission intensity and decay lifetime. The results show that a significant amount of Ce3+ is present in glasses prepared in a reducing atmosphere, whereas Ce4+ is the main species in an oxidizing atmosphere by means of absorption spectra and XPS curves. The reason for upconversion quenching is also discussed.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers

Mingying Peng, Benjamin Sprenger, Markus A. Schmidt, Harald Schwefel, and Lothar Wondraczek
Opt. Express 18(12) 12852-12863 (2010)

Luminescence from bismuth-germanate glasses and its manipulation through oxidants

A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek
Opt. Mater. Express 2(10) 1320-1328 (2012)

Role of minor quantity of Si3N4 addition on the optical properties of Ce3+-activated borogermanate scintillating glass

Xin-Yuan Sun, Zi-Piao Ye, Yun-Tao Wu, Zhuo-Hao Xiao, Pan Gao, Ri-Hua Mao, Zhi-Jun Zhang, and Jing-Tai Zhao
Opt. Mater. Express 5(6) 1381-1388 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
    [Crossref]
  2. T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
    [Crossref] [PubMed]
  3. R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
    [Crossref]
  4. R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
    [Crossref]
  5. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  6. T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
    [Crossref] [PubMed]
  7. F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
    [Crossref]
  8. S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
    [Crossref]
  9. Y. Mori, Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, S. Sudo, 1.5µm Broadband Amplification by Tellurite-Based EDFAs, Conference on Optical Fiber Communications, Optical Society of America, Dallas, Texas, 1997, p. PD1.
  10. P. F. Wysocki, N. Park, and D. Digiovanni, “Dual-stage erbium-doped, erbium/ytterbium-codoped fiber amplifier with up to +26-dBm output power and a 17-nm flat spectrum,” Opt. Lett. 21(21), 1744–1746 (1996).
    [Crossref] [PubMed]
  11. N. Sugimoto, “Ultrafast Optical Switches and Wavelength Division Multiplexing (WDM) Amplifiers Based on Bismuth Oxide Glasses,” J. Am. Ceram. Soc. 85(5), 1083–1088 (2002).
    [Crossref]
  12. J. T. Gopinath, H. Sotobayashi, and E. P. Ippen, Picosecond pulse amplification over a bandwidth of 80 nm in a 23 cm length of Bi2O3-based Erbium-doped fiber, Optical Amplifiers and Their Applications, Optical Society of America, Otaru, 2003, p. MD23.
  13. B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
    [Crossref]
  14. Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids 70(2), 261–265 (2009).
    [Crossref]
  15. Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
    [Crossref]
  16. X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
    [Crossref]
  17. S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
    [Crossref]
  18. G. Özen and B. Demirata, “Energy transfer characteristics of the hydrogen peroxide induced Ce3+-Ce4+ mixture,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(9), 1795–1800 (2000).
    [Crossref] [PubMed]
  19. E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
    [Crossref] [PubMed]
  20. M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
    [Crossref]
  21. S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
    [Crossref]
  22. Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
    [Crossref]
  23. J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
    [Crossref]
  24. A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
    [Crossref] [PubMed]
  25. B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
    [Crossref]
  26. Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
    [Crossref]
  27. T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
    [Crossref]
  28. H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
    [Crossref]
  29. K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471(Supplement C), 65–71 (2017).
    [Crossref]
  30. H. Kim, M. Kim, and S.-H. Byeon, “Ce4+/Ce3+ redox-controlled luminescence ‘off/on’ switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(2), 444–451 (2017).
    [Crossref]
  31. P. Bera and C. Anandan, “XRD and XPS studies of room temperature spontaneous interfacial reaction of CeO2 thin films on Si and Si3N4 substrates,” RSC Advances 4(108), 62935–62939 (2014).
    [Crossref]
  32. C. Anandan and P. Bera, “XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates,” Appl. Surf. Sci. 283(Supplement C), 297–303 (2013).
    [Crossref]
  33. F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
    [Crossref]
  34. F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
    [Crossref]
  35. S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
    [Crossref] [PubMed]
  36. A. M. Ebrahim and T. J. Bandosz, “Ce(III) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions,” ACS Appl. Mater. Interfaces 5(21), 10565–10573 (2013).
    [Crossref] [PubMed]
  37. S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
    [Crossref]
  38. B. M. Weckhuysen and R. A. Schoonheydt, “Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts,” Catal. Today 49(4), 441–451 (1999).
    [Crossref]
  39. G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
    [Crossref] [PubMed]

2017 (6)

A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
[Crossref] [PubMed]

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471(Supplement C), 65–71 (2017).
[Crossref]

H. Kim, M. Kim, and S.-H. Byeon, “Ce4+/Ce3+ redox-controlled luminescence ‘off/on’ switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(2), 444–451 (2017).
[Crossref]

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

2016 (4)

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
[Crossref]

S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
[Crossref]

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

2015 (3)

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
[Crossref] [PubMed]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

2014 (2)

T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
[Crossref] [PubMed]

P. Bera and C. Anandan, “XRD and XPS studies of room temperature spontaneous interfacial reaction of CeO2 thin films on Si and Si3N4 substrates,” RSC Advances 4(108), 62935–62939 (2014).
[Crossref]

2013 (4)

C. Anandan and P. Bera, “XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates,” Appl. Surf. Sci. 283(Supplement C), 297–303 (2013).
[Crossref]

Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
[Crossref]

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

A. M. Ebrahim and T. J. Bandosz, “Ce(III) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions,” ACS Appl. Mater. Interfaces 5(21), 10565–10573 (2013).
[Crossref] [PubMed]

2012 (1)

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
[Crossref]

2011 (3)

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

2009 (4)

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids 70(2), 261–265 (2009).
[Crossref]

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[Crossref]

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

2008 (1)

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

2007 (1)

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

2005 (1)

H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
[Crossref]

2004 (1)

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

2002 (1)

N. Sugimoto, “Ultrafast Optical Switches and Wavelength Division Multiplexing (WDM) Amplifiers Based on Bismuth Oxide Glasses,” J. Am. Ceram. Soc. 85(5), 1083–1088 (2002).
[Crossref]

2000 (1)

G. Özen and B. Demirata, “Energy transfer characteristics of the hydrogen peroxide induced Ce3+-Ce4+ mixture,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(9), 1795–1800 (2000).
[Crossref] [PubMed]

1999 (1)

B. M. Weckhuysen and R. A. Schoonheydt, “Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts,” Catal. Today 49(4), 441–451 (1999).
[Crossref]

1998 (1)

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

1996 (1)

1995 (1)

F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
[Crossref]

Adusumalli, V. N. K. B.

S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
[Crossref] [PubMed]

Agawane, G. L.

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471(Supplement C), 65–71 (2017).
[Crossref]

Aju Thara, T. R.

A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
[Crossref] [PubMed]

Anandan, C.

P. Bera and C. Anandan, “XRD and XPS studies of room temperature spontaneous interfacial reaction of CeO2 thin films on Si and Si3N4 substrates,” RSC Advances 4(108), 62935–62939 (2014).
[Crossref]

C. Anandan and P. Bera, “XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates,” Appl. Surf. Sci. 283(Supplement C), 297–303 (2013).
[Crossref]

Araújo, V. D.

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

Aškrabic, S.

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

Bai, Q.

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

Balestrieri, M.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Bandosz, T. J.

A. M. Ebrahim and T. J. Bandosz, “Ce(III) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions,” ACS Appl. Mater. Interfaces 5(21), 10565–10573 (2013).
[Crossref] [PubMed]

Barreda-Argueso, J. A.

S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
[Crossref]

Barreda-Argüeso, J. A.

S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
[Crossref]

Bensalem, F.

F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
[Crossref]

Bera, P.

P. Bera and C. Anandan, “XRD and XPS studies of room temperature spontaneous interfacial reaction of CeO2 thin films on Si and Si3N4 substrates,” RSC Advances 4(108), 62935–62939 (2014).
[Crossref]

C. Anandan and P. Bera, “XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates,” Appl. Surf. Sci. 283(Supplement C), 297–303 (2013).
[Crossref]

Bettinelli, M.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Bharali, P.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Bovo, L.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Bozon-Verduraz, F.

F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
[Crossref]

Bugli, G.

F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
[Crossref]

Byeon, S.-H.

H. Kim, M. Kim, and S.-H. Byeon, “Ce4+/Ce3+ redox-controlled luminescence ‘off/on’ switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(2), 444–451 (2017).
[Crossref]

Cantarero, A.

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

Chatti, M.

S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
[Crossref] [PubMed]

Chen, F.

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
[Crossref] [PubMed]

Chen, H.

H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
[Crossref]

Chengaiah, T.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
[Crossref]

Chiasera, A.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Choi, J. H.

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471(Supplement C), 65–71 (2017).
[Crossref]

Colis, S.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Dai, S.

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Danielson, E.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

de Lima, J. M. M.

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

Delamar, M.

F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
[Crossref]

Demirata, B.

G. Özen and B. Demirata, “Energy transfer characteristics of the hydrogen peroxide induced Ce3+-Ce4+ mixture,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(9), 1795–1800 (2000).
[Crossref] [PubMed]

Devenney, M.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Digiovanni, D.

Dinia, A.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Dohcevic-Mitrovic, Z. D.

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

Ebrahim, A. M.

A. M. Ebrahim and T. J. Bandosz, “Ce(III) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions,” ACS Appl. Mater. Interfaces 5(21), 10565–10573 (2013).
[Crossref] [PubMed]

Fernandez-Gonzalez, R.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Ferrari, M.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Gai, N.

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids 70(2), 261–265 (2009).
[Crossref]

Gallart, M.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Giaquinta, D. M.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Gilliot, P.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Golden, J. H.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Gomez-Salces, S.

S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
[Crossref]

Gómez-Salces, S.

S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
[Crossref]

Goncalves, R. R.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Gong, S.

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

Grünert, W.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Guo, Y.

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

Haushalter, R. C.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Hu, L.

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Huang, B.

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

Huang, J.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Huang, L.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Ionita, G.

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

Jiang, Z.

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Jiang, Z. H.

H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
[Crossref]

Jiao, J.

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

Jin, D.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Juluri, R. R.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Kim, H.

H. Kim, M. Kim, and S.-H. Byeon, “Ce4+/Ce3+ redox-controlled luminescence ‘off/on’ switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(2), 444–451 (2017).
[Crossref]

Kim, M.

H. Kim, M. Kim, and S.-H. Byeon, “Ce4+/Ce3+ redox-controlled luminescence ‘off/on’ switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(2), 444–451 (2017).
[Crossref]

Lahoz, F.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Li, G.

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

Li, J.

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

Li, M.

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

Li, P.

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

Li, T.

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

Lin, J.

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

Linganna, K.

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471(Supplement C), 65–71 (2017).
[Crossref]

Liu, Y. H.

H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
[Crossref]

Loitongbam, R. S.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Lukowiak, A.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Mahalingam, V.

S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
[Crossref] [PubMed]

Mariotto, G.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Marrero-Jerez, J.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

McFarland, E. W.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Moorthy, L. R.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
[Crossref]

Muhler, M.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Nie, Q.

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

Ningthoujam, R. S.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Nunez, P.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Ohara, S.

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[Crossref]

Özen, G.

G. Özen and B. Demirata, “Energy transfer characteristics of the hydrogen peroxide induced Ce3+-Ce4+ mixture,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(9), 1795–1800 (2000).
[Crossref] [PubMed]

Park, N.

Park, S.-E.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Pavani, K.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
[Crossref]

Phaomei, G.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Piccinelli, F.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Poojary, D. M.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Prabhakar Rao, P.

A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
[Crossref] [PubMed]

Qi, Y.

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

Raj, A. K. V.

A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
[Crossref] [PubMed]

Rath, A.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Reaves, C. M.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Reddy, B. M.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Rivera-Lopez, F.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Rodriguez, F.

S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
[Crossref]

Rodriguez, V. D.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Rodríguez, F.

S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
[Crossref]

Saikia, P.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Sarkar, S.

S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
[Crossref] [PubMed]

Sasikala, T.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
[Crossref]

Schmerber, G.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Schoonheydt, R. A.

B. M. Weckhuysen and R. A. Schoonheydt, “Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts,” Catal. Today 49(4), 441–451 (1999).
[Crossref]

Shen, X.

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

Shi, J.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

Singh, N. S.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Singh, W. R.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Speghini, A.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Sreena, T. S.

A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
[Crossref] [PubMed]

Su, Q.

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Sugimoto, N.

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[Crossref]

N. Sugimoto, “Ultrafast Optical Switches and Wavelength Division Multiplexing (WDM) Amplifiers Based on Bismuth Oxide Glasses,” J. Am. Ceram. Soc. 85(5), 1083–1088 (2002).
[Crossref]

Tian, Y.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
[Crossref] [PubMed]

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

Valiente, R.

S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
[Crossref]

S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
[Crossref]

van den Berg, M. W. E.

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

Vatsa, R. K.

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

Velazquez, J. J.

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Wang, J.

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids 70(2), 261–265 (2009).
[Crossref]

Wang, S.

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

Wang, X.

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

Wang, Z.

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

Weckhuysen, B. M.

B. M. Weckhuysen and R. A. Schoonheydt, “Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts,” Catal. Today 49(4), 441–451 (1999).
[Crossref]

Wei, T.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
[Crossref] [PubMed]

Weinberg, W. H.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Wen, L.

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Wong, K.-L.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

Wu, L.

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

Wu, X. D.

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Wysocki, P. F.

Xu, R.

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

Xu, S.

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
[Crossref] [PubMed]

Xu, T.

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

Xu, X.

Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
[Crossref]

Yang, F.

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

Yang, G.

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

Yang, J.

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Yang, Z.

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

Ye, M.

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

Yin, D.

Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
[Crossref]

Zhang, H.

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Zhang, J.

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

Zhang, L.

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Zhang, X.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Zheng, S.

Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
[Crossref]

Zhou, Y.

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
[Crossref]

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids 70(2), 261–265 (2009).
[Crossref]

Zhou, Y. F.

H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
[Crossref]

Ziegler, M.

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

Zou, R.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

S. Sarkar, M. Chatti, V. N. K. B. Adusumalli, and V. Mahalingam, “Highly Selective and Sensitive Detection of Cu2+ Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe,” ACS Appl. Mater. Interfaces 7(46), 25702–25708 (2015).
[Crossref] [PubMed]

A. M. Ebrahim and T. J. Bandosz, “Ce(III) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions,” ACS Appl. Mater. Interfaces 5(21), 10565–10573 (2013).
[Crossref] [PubMed]

Appl. Catal. A Gen. (1)

F. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, “Preparation and characterization of highly dispersed silica-supported ceria,” Appl. Catal. A Gen. 121(1), 81–93 (1995).
[Crossref]

Appl. Surf. Sci. (1)

C. Anandan and P. Bera, “XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates,” Appl. Surf. Sci. 283(Supplement C), 297–303 (2013).
[Crossref]

Catal. Today (1)

B. M. Weckhuysen and R. A. Schoonheydt, “Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts,” Catal. Today 49(4), 441–451 (1999).
[Crossref]

Chem. Mater. (1)

R. Zou, S. Gong, J. Shi, J. Jiao, K.-L. Wong, H. Zhang, J. Wang, and Q. Su, “Magnetic-NIR Persistent Luminescent Dual-Modal ZGOCS@MSNs@Gd2O3 Core–Shell Nanoprobes For In Vivo Imaging,” Chem. Mater. 29(9), 3938–3946 (2017).
[Crossref]

Chem. Phys. Lett. (1)

J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, and Z. Jiang, “Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses,” Chem. Phys. Lett. 384(4–6), 295–298 (2004).
[Crossref]

Dalton Trans. (1)

G. Phaomei, R. S. Ningthoujam, W. R. Singh, R. S. Loitongbam, N. S. Singh, A. Rath, R. R. Juluri, and R. K. Vatsa, “Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film,” Dalton Trans. 40(43), 11571–11580 (2011).
[Crossref] [PubMed]

J. Alloys Compd. (2)

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542, 271–275 (2012).
[Crossref]

H. Chen, Y. H. Liu, Y. F. Zhou, and Z. H. Jiang, “Spectroscopic properties of Er3+-doped tellurite glass for 1.55μm optical amplifier,” J. Alloys Compd. 397(1-2), 286–290 (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

N. Sugimoto, “Ultrafast Optical Switches and Wavelength Division Multiplexing (WDM) Amplifiers Based on Bismuth Oxide Glasses,” J. Am. Ceram. Soc. 85(5), 1083–1088 (2002).
[Crossref]

J. Appl. Phys. (1)

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys. 110(1), 013512 (2011).
[Crossref]

J. Lumin. (1)

X. Shen, Q. Nie, T. Xu, S. Dai, G. Li, and X. Wang, “Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses,” J. Lumin. 126(2), 273–277 (2007).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

H. Kim, M. Kim, and S.-H. Byeon, “Ce4+/Ce3+ redox-controlled luminescence ‘off/on’ switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(2), 444–451 (2017).
[Crossref]

M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, and A. Dinia, “Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7014–7021 (2015).
[Crossref]

S. Gomez-Salces, J. A. Barreda-Argueso, R. Valiente, and F. Rodriguez, “A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9021–9026 (2016).
[Crossref]

J. Non-Cryst. Solids (1)

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471(Supplement C), 65–71 (2017).
[Crossref]

J. Phys. Chem. C (1)

B. M. Reddy, P. Bharali, P. Saikia, S.-E. Park, M. W. E. van den Berg, M. Muhler, and W. Grünert, “Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides,” J. Phys. Chem. C 112(31), 11729–11737 (2008).
[Crossref]

J. Phys. Chem. Solids (1)

Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids 70(2), 261–265 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Aškrabić, Z. D. Dohčević-Mitrović, V. D. Araújo, G. Ionita, J. M. M. de Lima, and A. Cantarero, “F-centre luminescence in nanocrystalline CeO2,” J. Phys. D Appl. Phys. 46(49), 495306 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. Zhou, D. Yin, S. Zheng, and X. Xu, “Energy transfer and enhanced 1.53µm band signal gain in Er3+/Ce3+ codoped tellurite glass fiber,” J. Quant. Spectrosc. Radiat. Transf. 129, 1–7 (2013).
[Crossref]

J. Rare Earths (1)

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Nano Res. (1)

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang, K.-L. Wong, H. Zhang, D. Jin, J. Wang, and Q. Su, “Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence,” Nano Res. 10(6), 2070–2082 (2017).
[Crossref]

Opt. Commun. (1)

Y. Zhou, S. Wang, J. Lin, M. Ye, and G. Yang, “Effect of Ce3+ codoping on Er3+-doped bismuth-germanate glass and fiber under 980nm excitation,” Opt. Commun. 284(9), 2312–2316 (2011).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (3)

B. Huang, Y. Zhou, F. Yang, L. Wu, Y. Qi, and J. Li, “The 1.53μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles,” Opt. Mater. 51, 9–17 (2016).
[Crossref]

F. Yang, B. Huang, L. Wu, Y. Zhou, F. Chen, G. Yang, and J. Li, “Enhanced 1.53μm radiative transition in Er3+/Ce3+ co-doped tellurite glass modified by B2O3 oxide,” Opt. Mater. 47, 149–156 (2015).
[Crossref]

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (2)

T. Li, P. Li, Z. Wang, S. Xu, Q. Bai, and Z. Yang, “Coexistence phenomenon of Ce3+-Ce4+ and Eu2+-Eu3+ in Ce/Eu co-doped LiBaB9O15 phosphor: luminescence and energy transfer,” Phys. Chem. Chem. Phys. 19(5), 4131–4138 (2017).
[Crossref] [PubMed]

A. K. V. Raj, P. Prabhakar Rao, T. S. Sreena, and T. R. Aju Thara, “Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions,” Phys. Chem. Chem. Phys. 19(30), 20110–20120 (2017).
[Crossref] [PubMed]

RSC Advances (2)

P. Bera and C. Anandan, “XRD and XPS studies of room temperature spontaneous interfacial reaction of CeO2 thin films on Si and Si3N4 substrates,” RSC Advances 4(108), 62935–62939 (2014).
[Crossref]

R. Fernandez-Gonzalez, J. J. Velazquez, V. D. Rodriguez, F. Rivera-Lopez, A. Lukowiak, A. Chiasera, M. Ferrari, R. R. Goncalves, J. Marrero-Jerez, F. Lahoz, and P. Nunez, “Luminescence and structural analysis of Ce3+ and Er3+ doped and Ce3+-Er3+ codoped Ca3Sc2Si3O12 garnets: influence of the doping concentration in the energy transfer processes,” RSC Advances 6(18), 15054–15061 (2016).
[Crossref]

Science (1)

E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A Rare-Earth Phosphor Containing One-Dimensional Chains Identified Through Combinatorial Methods,” Science 279(5352), 837–839 (1998).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. Gómez-Salces, J. A. Barreda-Argüeso, R. Valiente, and F. Rodríguez, “Solarization-induced redox reactions in doubly Ce3+/Mn2+-doped highly transmission glasses studied by optical absorption and photoluminescence,” Sol. Energy Mater. Sol. Cells 157, 42–47 (2016).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

T. Wei, F. Chen, Y. Tian, and S. Xu, “Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 53–58 (2014).
[Crossref] [PubMed]

G. Özen and B. Demirata, “Energy transfer characteristics of the hydrogen peroxide induced Ce3+-Ce4+ mixture,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(9), 1795–1800 (2000).
[Crossref] [PubMed]

Other (2)

J. T. Gopinath, H. Sotobayashi, and E. P. Ippen, Picosecond pulse amplification over a bandwidth of 80 nm in a 23 cm length of Bi2O3-based Erbium-doped fiber, Optical Amplifiers and Their Applications, Optical Society of America, Otaru, 2003, p. MD23.

Y. Mori, Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, S. Sudo, 1.5µm Broadband Amplification by Tellurite-Based EDFAs, Conference on Optical Fiber Communications, Optical Society of America, Dallas, Texas, 1997, p. PD1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Absorption spectra of prepared samples; (a): the tailored UV-Vis absorption edge spectra, (b): the UV-Vis-NIR absorption spectra of samples with different CeO2 concentrations. The thickness of all samples is 1mm.
Fig. 2
Fig. 2 Emission spectra of samples pumped at 980nm.
Fig. 3
Fig. 3 Integrated areas of 1.5μm emission curves of Er3+:4I13/24I15/2 transition for bismuth glass with different concentrations of Ce.
Fig. 4
Fig. 4 Fluorescence decay curves for the Er3+:4I13/2 level in different concentrations of Ce in bismuth glass; (a): reducing atmosphere, (b): oxidizing atmosphere.
Fig. 5
Fig. 5 The decay lifetime of Er3+:4I13/2 for all samples.
Fig. 6
Fig. 6 UC luminescence spectra of samples under 980nm LD excitation.
Fig. 7
Fig. 7 XPS spectra of Ce (3d) for samples
Fig. 8
Fig. 8 XPS of O1s core levels in glass; (a): reducing atmosphere, (b): oxidizing atmosphere.
Fig. 9
Fig. 9 The energy level diagram of Er3+, Ce3+ ions and possible ET shortcuts pumped at 980nm.
Fig. 10
Fig. 10 The energy level diagram of Er3+, Ce4+ ions and possible ET shortcuts pumped at 980nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)=Aexp(t/τ)

Metrics