Abstract

Second harmonic light generation (SHG) was observed from as-deposited silica glass thin films suitable for waveguiding, without the need for an inversion symmetry-breaking poling treatment. Thin film stacks of up to 16 layers of alternating 2% phosphorus-doped and undoped silica glass on silica substrates were prepared and probed with a pulsed Nd:YAG laser at 1064 nm. We observed that even though these structures were not poled, they possess a net second order non-linearity with a value of the order of 0.03 pm/V. The SHG increased with the number of layers (total thicknesses between 4 and 9.6 µm have been tested) and also depended on the thickness ratio between the doped and undoped layers. Annealing at 800°C for 4 hours removed the nonlinearity completely.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures

Ksenia Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert
Opt. Express 19(27) 26975-26983 (2011)

Sample orientation in corona-poled multilayer silica structures

Tahseen Haque, Seyed Hamed Jafari, Jacques Albert, and Christopher W. Smelser
Appl. Opt. 57(31) 9301-9306 (2018)

Nondestructive interferometric determination of χ(2)(z) spatial distribution induced in thermally poled silica glasses

Vincent Tréanton, Nicolas Godbout, and Suzanne Lacroix
J. Opt. Soc. Am. B 21(12) 2213-2220 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [PubMed]
  2. M.-V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling,” Opt. Lett. 13(7), 592–594 (1988).
    [PubMed]
  3. V. Mizrahi and J. E. Sipe, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling: comment,” Appl. Opt. 28(11), 1976–1977 (1989).
    [PubMed]
  4. P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997).
  5. C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
    [PubMed]
  6. E. L. Lim, C. Corbari, A. V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and G. Kazansky, “Multi-Watt All-Fiber Frequency Doubled Laser,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu6A.5.
  7. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
    [PubMed]
  8. T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
  9. S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
  10. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12(8), 585–587 (1987).
    [PubMed]
  11. U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11(8), 516–518 (1986).
    [PubMed]
  12. A. R. Camara, J. M. B. Pereira, O. Tarasenko, W. Margulis, and I. C. S. Carvalho, “Optical creation and erasure of the linear electrooptical effect in silica fiber,” Opt. Express 23(14), 18060–18069 (2015).
    [PubMed]
  13. D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
  14. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5–6), 611–614 (1994).
  15. A. Camara, O. Tarasenko, and W. Margulis, “Study of thermally poled fibers with a two-dimensional model,” Opt. Express 22(15), 17700–17715 (2014).
    [PubMed]
  16. T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
  17. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21(7), 468–470 (1996).
    [PubMed]
  18. Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer,” J. Opt. Soc. Am. B 22(3), 598–604 (2005).
  19. Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).
  20. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, “Poled-glass devices: influence of surfaces and interfaces,” J. Opt. Soc. Am. B 24, 1075–1079 (2007).
  21. D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).
  22. H. L. An and S. Fleming, “Controlling spatial distribution of thermal poling induced second-order optical nonlinearity with multilayered structures,” Appl. Phys. Lett. 101, 101101 (2012).
  23. K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).
  24. K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
    [PubMed]
  25. R. W. Boyd, Nonlinear optics (Academic press, 2003).
  26. Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
  27. L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).
  28. S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
    [PubMed]
  29. A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
    [PubMed]
  30. A. Yariv, Quantum Electronics (2nd ed.) (John Wiley and Sons, New York, 1975).
  31. C. T. Sah, H. Sello, and D. A. Tremere, “Diffusion of phosphorus in silicon oxide film,” J. Phys. Chem. Solids 11, 288 (1959).
  32. SPECTRAGLASS Limited Unit 2, Inveralmond Close, Inveralmond Industrial Estate, Perth PH1 3TT, http://www.spectraglass.com/images/pdf/M006%20Quartz%20(JGS2).pdf .
  33. M. Fokine, K. Saito, and A. J. Ikushima, “Thermally induced second-order nonlinearity in silica-based glasses,” Appl. Phys. Lett. 87, 171907 (2005).

2017 (1)

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

2015 (3)

2014 (2)

2012 (1)

H. L. An and S. Fleming, “Controlling spatial distribution of thermal poling induced second-order optical nonlinearity with multilayered structures,” Appl. Phys. Lett. 101, 101101 (2012).

2011 (2)

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

2008 (1)

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).

2007 (2)

2005 (2)

Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer,” J. Opt. Soc. Am. B 22(3), 598–604 (2005).

M. Fokine, K. Saito, and A. J. Ikushima, “Thermally induced second-order nonlinearity in silica-based glasses,” Appl. Phys. Lett. 87, 171907 (2005).

2004 (1)

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).

2001 (1)

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

1999 (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

1998 (1)

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).

1997 (1)

1996 (1)

1995 (1)

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

1994 (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5–6), 611–614 (1994).

1991 (1)

1989 (1)

1988 (1)

1987 (1)

1986 (2)

U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11(8), 516–518 (1986).
[PubMed]

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).

1959 (1)

C. T. Sah, H. Sello, and D. A. Tremere, “Diffusion of phosphorus in silicon oxide film,” J. Phys. Chem. Solids 11, 288 (1959).

Albert, J.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

Alley, T. G.

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).

Alloatti, L.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

An, H.

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).

An, H. L.

H. L. An and S. Fleming, “Controlling spatial distribution of thermal poling induced second-order optical nonlinearity with multilayered structures,” Appl. Phys. Lett. 101, 101101 (2012).

Baets, R.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Bergot, M.-V.

Biswas, A.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).

Blanchetiere, C.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

Bonfrate, G.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

Brainis, E.

Brueck, S. R. J.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[PubMed]

Busacca, A.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

Callender, C. L.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

Camara, A.

Camara, A. R.

Carvalho, I. C. S.

Clemmen, S.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Corbari, C.

Dendooven, J.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Detavernier, C.

Faccio, D.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

Fage-Pedersen, J.

Farries, M. C.

Fermann, M. E.

Fleming, S.

H. L. An and S. Fleming, “Controlling spatial distribution of thermal poling induced second-order optical nonlinearity with multilayered structures,” Appl. Phys. Lett. 101, 101101 (2012).

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

Fokine, M.

M. Fokine, K. Saito, and A. J. Ikushima, “Thermally induced second-order nonlinearity in silica-based glasses,” Appl. Phys. Lett. 87, 171907 (2005).

Frauenglass, A.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).

Frenzel, T.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Freude, W.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Froelich, A.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Fujiwara, T.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

Gladyshev, A. V.

Harwood, D. W. J.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

Hermans, A.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Hernandez, Y.

Ibsen, M.

Ikushima, A. J.

M. Fokine, K. Saito, and A. J. Ikushima, “Thermally induced second-order nonlinearity in silica-based glasses,” Appl. Phys. Lett. 87, 171907 (2005).

Jacob, S.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

Jacobsen, R.

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

Kauranen, M.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Kazansky, P. G.

C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
[PubMed]

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997).

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21(7), 468–470 (1996).
[PubMed]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5–6), 611–614 (1994).

Kieninger, C.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Köhnle, K.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Koos, C.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Koskinen, K.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Kristensen, M.

Kudlinski, A.

Lago, L.

Lauermann, M.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Ledderhof, C.

Leuthold, J.

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Li, L.

Lo, K.-M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

Luo, Y.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).

Margulis, W.

Martinelli, G.

Mizrahi, V.

Morinaga, K.

Mukherjee, N.

Myers, R. A.

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[PubMed]

Österberg, U.

Pereira, J. M. B.

Poole, S.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

Poyntz-Wright, L. J.

Pruneri, V.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997).

Quiquempois, Y.

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5–6), 611–614 (1994).

Russell, P. St. J.

Sah, C. T.

C. T. Sah, H. Sello, and D. A. Tremere, “Diffusion of phosphorus in silicon oxide film,” J. Phys. Chem. Solids 11, 288 (1959).

Saito, K.

M. Fokine, K. Saito, and A. J. Ikushima, “Thermally induced second-order nonlinearity in silica-based glasses,” Appl. Phys. Lett. 87, 171907 (2005).

Sceats, M.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

Sello, H.

C. T. Sah, H. Sello, and D. A. Tremere, “Diffusion of phosphorus in silicon oxide film,” J. Phys. Chem. Solids 11, 288 (1959).

Shen, Y. R.

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).

Sipe, J. E.

Smelser, C. W.

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

Smithson, A.

Solano, E.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Stolen, R. H.

Takebe, H.

Tarasenko, O.

Tom, H. W. K.

Tremere, D. A.

C. T. Sah, H. Sello, and D. A. Tremere, “Diffusion of phosphorus in silicon oxide film,” J. Phys. Chem. Solids 11, 288 (1959).

Wegener, M.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

Wickberg, A.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

Yadav, K.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
[PubMed]

Zhao, Y.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

Annu. Rev. Mater. Sci. (1)

Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).

Appl. Opt. (1)

Appl. Phys. Lett. (5)

L. Alloatti, C. Kieninger, A. Froelich, M. Lauermann, T. Frenzel, K. Köhnle, W. Freude, J. Leuthold, M. Wegener, and C. Koos, “Second-order nonlinear optical metamaterials: ABC-type nanolaminates,” Appl. Phys. Lett. 107(12), 121903 (2015).

M. Fokine, K. Saito, and A. J. Ikushima, “Thermally induced second-order nonlinearity in silica-based glasses,” Appl. Phys. Lett. 87, 171907 (2005).

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84, 4935–4937 (2004).

H. L. An and S. Fleming, “Controlling spatial distribution of thermal poling induced second-order optical nonlinearity with multilayered structures,” Appl. Phys. Lett. 101, 101101 (2012).

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous Corona Poling of Multiple Glass Layers for Enhanced Effective Second-Order Optical Nonlinearities,” Appl. Phys. Lett. 99, 031109 (2011).

Electron. Lett. (1)

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).

J. Ceram. Soc. Jpn. (1)

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).

J. Non-Cryst. Solids (1)

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Solids (1)

C. T. Sah, H. Sello, and D. A. Tremere, “Diffusion of phosphorus in silicon oxide film,” J. Phys. Chem. Solids 11, 288 (1959).

Opt. Commun. (2)

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides,” Opt. Commun. 196, 187–190 (2001).

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5–6), 611–614 (1994).

Opt. Express (3)

Opt. Fib. Tech. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).

Opt. Lett. (8)

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[PubMed]

M.-V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling,” Opt. Lett. 13(7), 592–594 (1988).
[PubMed]

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21(7), 468–470 (1996).
[PubMed]

C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
[PubMed]

R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12(8), 585–587 (1987).
[PubMed]

U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11(8), 516–518 (1986).
[PubMed]

O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
[PubMed]

S. Clemmen, A. Hermans, E. Solano, J. Dendooven, K. Koskinen, M. Kauranen, E. Brainis, C. Detavernier, and R. Baets, “Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry,” Opt. Lett. 40(22), 5371–5374 (2015).
[PubMed]

Sci. Rep. (1)

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[PubMed]

Other (4)

A. Yariv, Quantum Electronics (2nd ed.) (John Wiley and Sons, New York, 1975).

SPECTRAGLASS Limited Unit 2, Inveralmond Close, Inveralmond Industrial Estate, Perth PH1 3TT, http://www.spectraglass.com/images/pdf/M006%20Quartz%20(JGS2).pdf .

R. W. Boyd, Nonlinear optics (Academic press, 2003).

E. L. Lim, C. Corbari, A. V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and G. Kazansky, “Multi-Watt All-Fiber Frequency Doubled Laser,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu6A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Multi-layer structures: a) multi-layer structures “A” consisting of alternating 500 nm thick P-doped (2 wt%) and undoped silica layers. b) multi-layer structures “B” consisting of alternating 200 nm thick P-doped (2 wt%) and 1 μm thick undoped silica layers. 8 and 16-layer samples were tested.
Fig. 2
Fig. 2 Maker fringe measurement apparatus consisting of Q-switched Nd:YAG laser at 1.064 μm, down collimating lenses L1: FL 5 cm and L2: FL 2.5 cm, focusing lens L3: FL 15 cm, L4: FL 10 cm lens, F1: Long-pass filter (blocks λ<800 nm), F2: short-pass filter (blocks λ>800 nm), F3: band-pass filter centered on 532 nm, M1 and M2: dielectric mirrors.
Fig. 3
Fig. 3 Measured SHG as a function of incidence angle for 4 samples and a bare substrate (see text for sample descriptions).
Fig. 4
Fig. 4 Ratio of the measured SHG at angles of incidence between 30 and 80 degrees from Fig. 3. Labels “A” and “B” refer to samples with different thickness ratios (see text for details).
Fig. 5
Fig. 5 SHG power as a function of the weight % of phosphorus in samples with 8 layers of Type B.
Fig. 6
Fig. 6 SHG power generated in a 16-layer sample of Type B at 20 degrees of incidence, along with second-order polynomial fit.
Fig. 7
Fig. 7 Comparison of the SHG from a 16-layer Type B sample and a 1 mm thick x-cut quartz sample. The input power is decreased by a factor of 10 for the quartz sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l c = λ 2( n 2ω n ω )
P 2ω =2T ( μ 0 ϵ 0 ) 3 2    ω 2 d 2 L 2 n 3 ( ( P ω ) 2 A ) sin 2 ( ΔkL 2 ) ( ΔkL/2 ) 2

Metrics