Abstract

We describe the treatment of new hydrogels with nine different chemical compositions by femtosecond laser writing. The phase change induced in the wavefront when passing through the written areas was measured in all of these materials. The induced phase change is negative, which is attributed to the higher presence of water in the written regions and confirmed via Raman spectroscopy. The largest induced change in a single layer at 100 mm/s was −3.69 waves at 543 nm. These results show a strong dependence of the phase change on the concentration of some components and their molar ratio. We propose that some components are essential for the nonlinear energy absorption (“dopants”), while other components (“quenchers”) are essential in redirecting the absorbed energy to cause chemical reactions that profoundly change the polymer structure.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification

Gustavo A. Gandara-Montano, Len Zheleznyak, and Wayne H. Knox
Opt. Mater. Express 8(2) 295-313 (2018)

Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
Opt. Express 16(26) 21914-21921 (2008)

Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining

Li Ding, Richard Blackwell, Jay F. Künzler, and Wayne H. Knox
Opt. Express 14(24) 11901-11909 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  2. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
    [Crossref] [PubMed]
  3. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [Crossref] [PubMed]
  4. G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
    [Crossref] [PubMed]
  5. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
    [Crossref] [PubMed]
  6. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
    [Crossref] [PubMed]
  7. L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
    [Crossref]
  8. G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
    [Crossref]
  9. J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
    [Crossref] [PubMed]
  10. J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
    [Crossref]
  11. R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
    [Crossref] [PubMed]
  12. V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
    [Crossref] [PubMed]
  13. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
    [Crossref]
  14. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  15. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  16. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B 26(9), 1679–1687 (2009).
    [Crossref]
  17. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26(4), 595–602 (2009).
    [Crossref]
  18. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  19. J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
    [Crossref] [PubMed]
  20. Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
    [Crossref]
  21. L. Xu, “Femtosecond Laser Micromachining in Ophthalmic Materials (I): Material Optimization and Calibration,” in Femtosecond laser processing of ophthalmic materials and ocular tissues: a novel approach for non-invasive vision correction, L. Xu (Ph.D. Thesis, 2013), University of Rochester, pp. 68–93.
  22. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
    [Crossref]
  23. T. Kohnen, G. Magdowski, and D. D. Koch, “Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses,” J. Cataract Refract. Surg. 22(2Suppl 2), 1342–1350 (1996).
    [Crossref] [PubMed]
  24. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
    [Crossref]
  25. C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
    [Crossref]
  26. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref] [PubMed]
  27. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
    [Crossref]
  28. B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15(10), 6069–6074 (2007).
    [Crossref] [PubMed]
  29. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32(2), 190–192 (2007).
    [Crossref] [PubMed]
  30. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
    [Crossref]
  31. P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
    [Crossref]
  32. P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
    [Crossref]
  33. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  34. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
    [Crossref]
  35. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  36. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26(24), 5245–5258 (1987).
    [Crossref] [PubMed]
  37. T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
    [Crossref]
  38. E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
    [Crossref]
  39. R. W. Boyd, “Processes Resulting from the Intensity-Dependent Refractive Index,” in Nonlinear Optics (Elsevier Science, 2008).

2017 (1)

2016 (1)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

2012 (2)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

2011 (2)

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2007 (3)

2006 (2)

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
[Crossref] [PubMed]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

2005 (4)

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
[Crossref]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[Crossref] [PubMed]

2004 (1)

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

2003 (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

2001 (2)

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

1998 (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

1997 (1)

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

1996 (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

T. Kohnen, G. Magdowski, and D. D. Koch, “Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses,” J. Cataract Refract. Surg. 22(2Suppl 2), 1342–1350 (1996).
[Crossref] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1992 (1)

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

1987 (1)

1982 (1)

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Anderson, N.

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Balducci, F.

P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
[Crossref]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Basanta, M.

Baum, A.

Bille, J. F.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Blackwell, R.

Blackwell, R. I.

Borrelli, N. F.

Cancado, L. G.

Chalker, P. R.

Chan, J. W.

Chan, K.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Chhoeung, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Corrielli, G.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Crespi, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Dai, Y.

Deb, S.

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

Ding, L.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Eaton, S. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ellis, J. D.

Engelhardt, J.

Enright, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Fielden, P. R.

Gandara-Montano, G. A.

Geremia, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Goddard, N. J.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Greivenkamp, J. E.

Grossel, M. C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

Hampp, N.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Heinzer, J.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Herman, P. R.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hirao, K.

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[Crossref] [PubMed]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

Huser, T.

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Ina, H.

Itoh, K.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Ivansky, A.

Jani, D.

Jiang, Z.

Jones, L. W.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

Karlgard, C. C. S.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

Kemal, E.

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

Kim, H. C.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Knox, W. H.

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26(4), 595–602 (2009).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B 26(9), 1679–1687 (2009).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
[Crossref] [PubMed]

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
[Crossref] [PubMed]

Kobayashi, S.

Koch, D. D.

T. Kohnen, G. Magdowski, and D. D. Koch, “Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses,” J. Cataract Refract. Surg. 22(2Suppl 2), 1342–1350 (1996).
[Crossref] [PubMed]

Kohnen, T.

T. Kohnen, G. Magdowski, and D. D. Koch, “Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses,” J. Cataract Refract. Surg. 22(2Suppl 2), 1342–1350 (1996).
[Crossref] [PubMed]

Koo, J. S.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Krol, D. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref] [PubMed]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Künzler, J. F.

Kuroiwa, Y.

Labenski, G.

Laghouissa, A.

Lam, Y. C.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Leung, K. T.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

Lim, C. P.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Lin, G.

Linhardt, J.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Ma, H.

Magdowski, G.

T. Kohnen, G. Magdowski, and D. D. Koch, “Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses,” J. Cataract Refract. Surg. 22(2Suppl 2), 1342–1350 (1996).
[Crossref] [PubMed]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Mataloni, P.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Matsumoto, M.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Metev, S.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

Monti, P.

P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
[Crossref]

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

Moresoli, C.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

Motzkus, M.

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Narita, Y.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Novotny, L.

Osellame, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Ozeki, Y.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Pawar, S.

Perova, T. S.

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

Perrie, W.

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Portney, V.

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
[Crossref] [PubMed]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qiu, J.

Ramponi, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Risbud, S.

Riziotis, C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Sahler, R.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Sandy Lee, I. Y.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Sansoni, L.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Santinelli, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Sarkar, D. K.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

Savage, D. E.

Sciarrino, F.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Scully, P. J.

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Shams Eldin, M. A.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Simoni, R.

P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
[Crossref]

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

Smith, P. G. R.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

Smith, T.

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Streltsov, A. M.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Taddei, P.

P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
[Crossref]

Takeda, M.

Takeshima, N.

Tanaka, S.

Thomas, C. L. P.

Träger, J.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Vij, J. K.

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Volpp, H. R.

Wang, Z. K.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Williams, R. B.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

Wochnowski, C.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xu, H.

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

Xu, L.

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Yoshino, T.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Zhang, S.

Zheng, H. Y.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Zhu, B.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Appl. Surf. Sci. (1)

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisionTM, Focus® Night&DayTM and conventional hydrogel contact lens,” Appl. Surf. Sci. 230(1-4), 106–114 (2004).
[Crossref]

Biomed. Opt. Express (1)

Colloid Polym. Sci. (1)

T. S. Perova, J. K. Vij, and H. Xu, “Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA,” Colloid Polym. Sci. 275(4), 323–332 (1997).
[Crossref]

J. Appl. Phys. (1)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

J. Cataract Refract. Surg. (3)

T. Kohnen, G. Magdowski, and D. D. Koch, “Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses,” J. Cataract Refract. Surg. 22(2Suppl 2), 1342–1350 (1996).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
[Crossref] [PubMed]

J. Mater. Chem. (1)

E. Kemal and S. Deb, “Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair,” J. Mater. Chem. 22(21), 10725–10734 (2012).
[Crossref]

J. Mol. Struct. (2)

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

P. Taddei, F. Balducci, R. Simoni, and P. Monti, “Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens,” J. Mol. Struct. 744-747, 507–514 (2005).
[Crossref]

J. Non-Cryst. Solids (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass,” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Macromol. Biosci. (1)

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3–4), 583–592 (2003).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Polym. Degrad. Stabil. (1)

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly (methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Proc. SPIE (1)

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Other (3)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

R. W. Boyd, “Processes Resulting from the Intensity-Dependent Refractive Index,” in Nonlinear Optics (Elsevier Science, 2008).

L. Xu, “Femtosecond Laser Micromachining in Ophthalmic Materials (I): Material Optimization and Calibration,” in Femtosecond laser processing of ophthalmic materials and ocular tissues: a novel approach for non-invasive vision correction, L. Xu (Ph.D. Thesis, 2013), University of Rochester, pp. 68–93.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Transmission spectra for materials (a) with no dopant (H and D), (b) with moderate MOBP concentration (E, C, and L), (c) with high MOBP concentration (F and G), and (d) with alternative dopant (J and K). Refer to Table 2 for sample thicknesses.
Fig. 2
Fig. 2 (a) A diagram displaying the femtosecond writing system. (b) Diagram of Mach-Zehnder interferometer used with two wavelengths for phase change measurements.
Fig. 3
Fig. 3 (a) Phase map retrieved of region with rectangle written in Material C at 178 mW measured at 543 nm and at (b) 633 nm. The arrows point at three pairs of pixels, illustrating the concept that the phase change, as indicated by single pairs of pixels at the different wavelengths, can be used to unambiguously measure the phase change.
Fig. 4
Fig. 4 Image of two rectangles written at 400 nm in material L at 178 mW and 100 mm/s taken (a) under the DIC mode and (b) under the bright field mode. The laser dwelled momentarily at the end of the writing process, generating a small burn mark at the inferior left corner of each rectangle. Quantitative phase measurements were carried out using the central part of the rectangles, far from the short side of the rectangles.
Fig. 5
Fig. 5 Interferogram of rectangle in Material L written at 118 mW one month after writing with interferometer in null configuration and a wedge on top of sample. Arrow indicates direction of increasing optical path length.
Fig. 6
Fig. 6 Phase change magnitude measured at 543 nm for the rectangles written at 100 mm/s as a function of writing power for (a) material G, (b) material F, material K, material L, (c) material C, material E, (d) material J, material D, and material H. The error bars in these plots represent the standard deviation of each writing condition measurement.
Fig. 7
Fig. 7 Phase change magnitude measured at 543 nm for the rectangles written at 100 mm/s and 133 mW as a function of MOPB and MAA molar fraction for materials C, D, E, F, G, H, and L.
Fig. 8
Fig. 8 Raman spectrum for (a) material C and (b) material G recorded from rectangles written with various laser powers and also from outside of the rectangle. Spectra are normalized to peak 2945 cm−1 corresponding to νasCH2 stretching mode of hydrogel. The broadband centered at about 3420 cm−1 originating from νOH stretching vibration of water is stronger in rectangles written with a higher laser power. The increase in water content is much more prominent in material G, which also shows very high magnitude of phase change.
Fig. 9
Fig. 9 I3420/ I2945 ratio plotted as a function of the magnitude of the induced phase change in (a) material C and (b) material G. This ratio is proportional to water content of hydrogel. Higher water content is correlated with a higher magnitude of phase change. Error bars indicate standard deviation.
Fig. 10
Fig. 10 I3420/ I2945 ratio from Raman spectra collected across rectangle written using laser power of 178 mW in (a) material C and (b) material G. The width of written rectangles was 33 µm. The profiles show that higher water content, as indicated by I3420/ I2945 ratio, is confined only to areas treated with the laser.
Fig. 11
Fig. 11 (a) Diagram showing the affected volume under a nonlinear process. (b) Diagram showing the affected volume under a linear process.

Tables (2)

Tables Icon

Table 1 Content of compounds and their molar ratio [in % mol] in different materials

Tables Icon

Table 2 Water content, refractive indices, and sample thicknesses for the different materials.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δϕ= (Δn)(d) λ ,
EWC= ( m h m x ) ( m h ) (100),

Metrics