Abstract

The fascinating nanocomposites of semiconductors coupled with noble metals have a promising potential to develop a low-cost substrate for surface-enhanced Raman scattering (SERS) applications. Herein, the controlled construction of Ag nano-islands on ZnO nanosheets (Ag@ZnO nanocomposites) was successfully achieved by a green and effective strategy based on ultraviolet light induced-photochemical reaction. It was found that the Ag content in Ag@ZnO nanocomposites linearly increases to 4.62% by simply increasing the irradiation time (0~10 min). More importantly, increasing the Ag content (0~4.62%) in the nanocomposites results in enhanced SERS activities with an enhancement factor up to 107 and a detection limit as low as 10−9 M. Compared with the complete noble metal substrate, the novel Ag@ZnO nanocomposites (<5% Ag compositions) were cost-effective and possessed high biocompatible properties; which can be established as an advanced inexpensive substrate for ultrasensitive SERS analysis, particularly for food safety and biomedical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
    [Crossref] [PubMed]
  2. S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
    [Crossref] [PubMed]
  3. R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
    [Crossref] [PubMed]
  4. X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).
  5. Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
    [Crossref] [PubMed]
  6. Y. Bellouard, E. Block, J. Squier, and J. Gobet, “Plasmon-less surface enhanced Raman spectra induced by self-organized networks of silica nanoparticles produced by femtosecond lasers,” Opt. Express 25(9), 9587–9594 (2017).
    [Crossref] [PubMed]
  7. B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
  8. A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
    [Crossref] [PubMed]
  9. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  10. L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
    [Crossref]
  11. F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
    [Crossref] [PubMed]
  12. X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
    [Crossref] [PubMed]
  13. D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
    [Crossref] [PubMed]
  14. J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
    [Crossref] [PubMed]
  15. C. E. Taylor, S. D. G. And, and J. E. Pemberton, “Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy,” Anal. Chem. 68(14), 2401–2408 (1996).
    [Crossref]
  16. J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
    [Crossref] [PubMed]
  17. C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
    [Crossref] [PubMed]
  18. J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
    [Crossref]
  19. H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
    [Crossref] [PubMed]
  20. W. Ren, Z. Zhou, and J. M. Irudayaraj, “Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites,” Analyst (Lond.) 140(19), 6625–6630 (2015).
    [Crossref] [PubMed]
  21. L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
    [Crossref] [PubMed]
  22. Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
    [Crossref]
  23. Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
    [Crossref]
  24. C. Tan, C. Qin, and B. Sadtler, “Light-directed growth of metal and semiconductor nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(23), 5628–5642 (2017).
    [Crossref]
  25. S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).
  26. L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
    [Crossref] [PubMed]
  27. Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
    [Crossref] [PubMed]
  28. H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
    [Crossref]
  29. D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
    [Crossref]
  30. M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
    [Crossref]
  31. M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
    [Crossref] [PubMed]
  32. S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
    [Crossref] [PubMed]
  33. B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
    [Crossref]
  34. X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
    [Crossref] [PubMed]
  35. X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
    [Crossref] [PubMed]
  36. M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
    [Crossref] [PubMed]
  37. Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
    [Crossref] [PubMed]

2017 (8)

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Y. Bellouard, E. Block, J. Squier, and J. Gobet, “Plasmon-less surface enhanced Raman spectra induced by self-organized networks of silica nanoparticles produced by femtosecond lasers,” Opt. Express 25(9), 9587–9594 (2017).
[Crossref] [PubMed]

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
[Crossref] [PubMed]

C. Tan, C. Qin, and B. Sadtler, “Light-directed growth of metal and semiconductor nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(23), 5628–5642 (2017).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

2016 (12)

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
[Crossref] [PubMed]

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

2015 (4)

W. Ren, Z. Zhou, and J. M. Irudayaraj, “Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites,” Analyst (Lond.) 140(19), 6625–6630 (2015).
[Crossref] [PubMed]

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

2014 (7)

S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
[Crossref] [PubMed]

Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
[Crossref]

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
[Crossref] [PubMed]

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref] [PubMed]

2013 (1)

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

2012 (1)

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

2010 (1)

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
[Crossref] [PubMed]

2009 (1)

D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
[Crossref]

2008 (1)

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

1996 (1)

C. E. Taylor, S. D. G. And, and J. E. Pemberton, “Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy,” Anal. Chem. 68(14), 2401–2408 (1996).
[Crossref]

Alshanableh, A.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

And, S. D. G.

C. E. Taylor, S. D. G. And, and J. E. Pemberton, “Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy,” Anal. Chem. 68(14), 2401–2408 (1996).
[Crossref]

Bai, M.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Barrow, C. J.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Bellouard, Y.

Birke, R. L.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Block, E.

Cabello, G.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).

Cañamares, M. V.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Chen, D.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Chen, F.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Chen, J.

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

Chen, M.

Chen, M. H.

Chen, X. J.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).

Chen, Y. C.

Chenal, C.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Cheng, L.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Cheng, Z.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Chuang, C. J.

Diciaccio, B.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Dinh, C. T.

C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
[Crossref] [PubMed]

Do, T. O.

C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
[Crossref] [PubMed]

Dou, S.

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

Duchene, J. S.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Fang, J.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Fang, Z.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Fu, S. Y.

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Gao, Z.

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Ginting, R. T.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Gobet, J.

Guo, L.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
[Crossref]

Guo, W.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Hackler, R. A.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

Han, S. Q.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

Han, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Hasi, W. L.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

He, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Henzie, J.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
[Crossref] [PubMed]

Hsu, Y. K.

Huang, F.

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Huang, J.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Huang, Z.

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

Irudayaraj, J. M.

W. Ren, Z. Zhou, and J. M. Irudayaraj, “Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites,” Analyst (Lond.) 140(19), 6625–6630 (2015).
[Crossref] [PubMed]

Jia, H. S.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Jiang, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Johnston-Peck, A. C.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Jones, S.

S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
[Crossref] [PubMed]

Jumali, M. H. H.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Khanadeev, V.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

Khlebtsov, B.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).

Khlebtsov, N.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

Kleitz, F.

C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
[Crossref] [PubMed]

Large, N.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref] [PubMed]

Lee, H. B.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Li, D.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Li, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Li, M. Y.

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

Li, S.

Li, X.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Li, Y.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Li, Z.

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

Li, Z. Y.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Liang, J.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Lin, D.

D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
[Crossref]

Lin, D. Y.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

Lin, J.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Lin, X.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

Lin, Y. G.

Ling, X. Y.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
[Crossref] [PubMed]

Liu, H.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Liu, H. R.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Liu, J.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, L.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Liu, X. G.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Liz-Marzán, L. M.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Lombardi, J. R.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Lou, X. T.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

Lu, Z. W.

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

Ma, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Ma, D.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Ma, G.

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Ma, L.

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

McAnally, M. O.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

Meng, G.

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

Meng, M.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Mulvihill, M. J.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
[Crossref] [PubMed]

Nordlander, P.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref] [PubMed]

Oleiwi, H. F.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Pan, W.

D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
[Crossref]

Pastoriza-Santos, I.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Pemberton, J. E.

C. E. Taylor, S. D. G. And, and J. E. Pemberton, “Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy,” Anal. Chem. 68(14), 2401–2408 (1996).
[Crossref]

Pérez-Juste, J.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Polavarapu, L.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Pramanik, A.

S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
[Crossref] [PubMed]

Qian, K.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Qin, C.

C. Tan, C. Qin, and B. Sadtler, “Light-directed growth of metal and semiconductor nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(23), 5628–5642 (2017).
[Crossref]

Qin, D.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Qiu, J.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Ray, P. C.

S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
[Crossref] [PubMed]

Ren, W.

W. Ren, Z. Zhou, and J. M. Irudayaraj, “Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites,” Analyst (Lond.) 140(19), 6625–6630 (2015).
[Crossref] [PubMed]

Ren, X.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Rodal-Cedeira, S.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Sadtler, B.

C. Tan, C. Qin, and B. Sadtler, “Light-directed growth of metal and semiconductor nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(23), 5628–5642 (2017).
[Crossref]

Samal, A. K.

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Schatz, G. C.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

Shang, Y.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
[Crossref]

Shao, G. X.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Shao, Y.-M.

Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
[Crossref]

Sinha, S. S.

S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
[Crossref] [PubMed]

Squier, J.

Stair, P. C.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

Su, D.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Su, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Sun, Q.

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

Sun, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Tan, C.

C. Tan, C. Qin, and B. Sadtler, “Light-directed growth of metal and semiconductor nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(23), 5628–5642 (2017).
[Crossref]

Tan, C. H.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Tan, S. T.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Tan, Y.

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

Tang, J.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Taylor, C. E.

C. E. Taylor, S. D. G. And, and J. E. Pemberton, “Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy,” Anal. Chem. 68(14), 2401–2408 (1996).
[Crossref]

Tian, Z. Q.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).

Van Duyne, R. P.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

Wang, D.

Wang, H.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref] [PubMed]

Wang, X.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Wang, Y. C.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Wang, Z.

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

Wei, X.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Winget, S. A.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Wu, D. Y.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).

Wu, H.

D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
[Crossref]

Wu, J. H.

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

Wu, X.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Wu, Y.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Xie, Z. X.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Xiong, J.

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

Xu, B. S.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Xu, G. Q.

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

Xu, K.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Xu, L.

Yahaya, M.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Yang, G.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yang, H.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Yang, L.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Yang, M.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Yang, P.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
[Crossref] [PubMed]

Yang, S. K.

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

Yang, W.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yap, C. C.

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Yen, H.

C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
[Crossref] [PubMed]

Yin, D.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Yin, Y.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

You, B.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

You, H.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yu, J.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

Zeng, J.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhai, Y.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Zhang, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhang, D.-F.

Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
[Crossref]

Zhang, H.

Zhang, J.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref] [PubMed]

Zhang, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
[Crossref]

Zhang, X.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Zhang, Y.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Zhang, Z. X.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Zhao, B.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Zhao, E. W.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Zhao, J. F.

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

Zhao, Y.

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

Zheng, H.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhou, Q.

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

Zhou, Z.

W. Ren, Z. Zhou, and J. M. Irudayaraj, “Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites,” Analyst (Lond.) 140(19), 6625–6630 (2015).
[Crossref] [PubMed]

Zhu, X.

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

Acc. Chem. Res. (1)

S. S. Sinha, S. Jones, A. Pramanik, and P. C. Ray, “Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis,” Acc. Chem. Res. 49(12), 2725–2735 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. Huang, D. Ma, F. Chen, D. Chen, M. Bai, K. Xu, and Y. Zhao, “Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing,” ACS Appl. Mater. Interfaces 9(8), 7436–7446 (2017).
[Crossref] [PubMed]

ACS Nano (1)

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref] [PubMed]

Anal. Chem. (1)

C. E. Taylor, S. D. G. And, and J. E. Pemberton, “Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy,” Anal. Chem. 68(14), 2401–2408 (1996).
[Crossref]

Analyst (Lond.) (1)

W. Ren, Z. Zhou, and J. M. Irudayaraj, “Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites,” Analyst (Lond.) 140(19), 6625–6630 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

Y. Shang, Y.-M. Shao, D.-F. Zhang, and L. Guo, “Recrystallization-induced self-assembly for the growth of Cu2O superstructures,” Angew. Chem. Int. Ed. 53(43), 11514–11518 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

C. T. Dinh, H. Yen, F. Kleitz, and T. O. Do, “Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis,” Angew. Chem. Int. Ed. Engl. 53(26), 6618–6623 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Chem. Mater. (1)

D. Lin, H. Wu, R. Zhang, and W. Pan, “Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers,” Chem. Mater. 21(15), 3479–3484 (2009).
[Crossref]

CrystEngComm (1)

J. Xiong, Q. Sun, J. Chen, Z. Li, and S. Dou, “Ambient controlled synthesis of advanced core-shell plasmonic Ag@ZnO photocatalysts,” CrystEngComm 18(10), 1713–1722 (2016).
[Crossref]

J. Am. Chem. Soc. (2)

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[Crossref] [PubMed]

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132(1), 268–274 (2010).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

C. Tan, C. Qin, and B. Sadtler, “Light-directed growth of metal and semiconductor nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(23), 5628–5642 (2017).
[Crossref]

J. Photochem. Photobio. C. (1)

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C. 21, 54–80 (2014).

J. Phys. Chem. C (3)

S. K. Yang, M. Y. Li, X. Zhu, G. Q. Xu, and J. H. Wu, “Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO,” J. Phys. Chem. C 119(25), 14312–14318 (2015).

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, “Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis,” J. Phys. Chem. C 116(30), 16182–16190 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

Q. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370–374 (2014).
[Crossref] [PubMed]

Langmuir (1)

A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste, and I. Pastoriza-Santos, “Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties,” Langmuir 29(48), 15076–15082 (2013).
[Crossref] [PubMed]

Nano Lett. (3)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Y. Tan, L. Ma, Z. Gao, M. Chen, and F. Chen, “Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering,” Nano Lett. 17(4), 2621–2626 (2017).
[Crossref] [PubMed]

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Nano Res. (2)

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).
[Crossref]

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods,” Nano Res. 9(8), 2303–2318 (2016).

Nanoscale (3)

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref] [PubMed]

Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale 6(24), 15280–15285 (2014).
[Crossref] [PubMed]

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7(12), 5147–5151 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
[Crossref]

Opt. Express (3)

Phys. Chem. Chem. Phys. (2)

X. Lin, W. L. Hasi, S. Q. Han, X. T. Lou, D. Y. Lin, and Z. W. Lu, “Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection,” Phys. Chem. Chem. Phys. 17(46), 31324–31331 (2015).
[Crossref] [PubMed]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19(18), 11212–11219 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, “Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement,” Sci. Rep. 6(1), 32645 (2016).
[Crossref] [PubMed]

Small (1)

F. Huang, G. Ma, J. Liu, J. Lin, X. Wang, and L. Guo, “High-yield synthesis of hollow octahedral silver nanocages with controllable pack density and their high-performance SERS application,” Small 12(39), 5442–5448 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The typical TEM images of (a) original ZnO and (b) Ag@ZnO nanocomposites. (c) The HRTEM image of Ag@ZnO nanocomposites. (d) TEM image of enlarged area. The bottom pictures in (d) show the corresponding element mapping.
Fig. 2
Fig. 2 SEM images of (a) original ZnO and (b) ZnO@Ag nanoparticles, respectively. The insets show the corresponding EDS results, respectively.
Fig. 3
Fig. 3 The XRD patterns of original ZnO and Ag@ZnO nanocomposites fabricated by 10 min ultraviolet light irradiation, respectively.
Fig. 4
Fig. 4 XPS spectra of Ag@ZnO nanocomposites: (a) survey-scan spectrum, (b) O 1s, (c)Zn 2p, (d) Ag 3d.
Fig. 5
Fig. 5 (a) The UV-visible absorption spectra of Ag@ZnO nanocomposites via different ultraviolet irradiation times. (b) The curve of the Ag concentration in Ag@ZnO nanocomposites versus irradiation time.
Fig. 6
Fig. 6 The typical schematic of overgrowth of Ag species on ZnO precursors.
Fig. 7
Fig. 7 (a) SERS spectra of different concentrations of CV molecules adsorbed on Ag@ZnO nanocomposites of 4.62% Ag and normal Raman spectrum of CV, respectively. Inset shows the CV molecular structure. (b) GuassAmp nonlinear curve fitting between CV 1175 cm−1, 1373 cm−1, 1617 cm−1 peak intensities and logarithm of concentrations, respectively. (c) SERS spectra via different Ag contents of Ag@ZnO nanoparticles in 10−5 M CV. (d) Linear curve fitting between CV 1175 cm−1, 1373 cm−1, 1617 cm−1 peak intensities and Ag concentration, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ZnO + hv ZnO + e + h + (photoexcitation of ZnO)
(CH 2 OH) 2 + 4 h + ( C HO) 2 + 4 H + (photooxidation)
Ag + + e Ag 0 (photoreduction)
EF=(ISERS/NSERS)/(INOR/NNOR)

Metrics