Abstract

Transparent glass ceramics containing hexagonal NaGdF4: Yb3+, Ho3+ nanocrystals were successfully fabricated via self-crystallization, which was further confirmed by XRD, TEM, HRTEM, and STEM-HADDF, as well as upconversion (UC) emission spectra. Impressively, GC750 exhibited fascinating upconversion luminescence, and the corresponding 5F1/5G6 and 5F2,3/3K8 states of Ho3+ were proven to be thermally coupled energy levels (TCELs), resulting in high temperature-sensitive behaviors based on fluorescence intensity ratio (FIR) for optical thermometry. As a consequence, a high relative sensitivity of 1.43%·K−1 at 390 K was achieved, offering a great potentially application in optical thermometry.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior

Wei Xu, Xiaoyang Gao, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao
Opt. Express 20(16) 18127-18137 (2012)

Enhanced upconversion in novel KLu2F7:Er3+ transparent oxyfluoride glass-ceramics

YunLe Wei, XiaoMan Li, and Hai Guo
Opt. Mater. Express 4(7) 1367-1372 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
    [Crossref] [PubMed]
  2. J. C. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
    [Crossref] [PubMed]
  3. N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
    [Crossref] [PubMed]
  4. X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
    [Crossref] [PubMed]
  5. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  6. G. Wang, Q. Peng, and Y. Li, “Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications,” Acc. Chem. Res. 44(5), 322–332 (2011).
    [Crossref] [PubMed]
  7. P. Kumar, K. Nagpal, and B. K. Gupta, “Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting,” ACS Appl. Mater. Interfaces 9(16), 14301–14308 (2017).
    [Crossref] [PubMed]
  8. J. Liu, R. V. Deun, and A. M. Kaczmarek, “Optical thermometry of MoS2: Eu3+ 2D luminescent nanosheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9937–9941 (2016).
    [Crossref]
  9. L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
    [Crossref] [PubMed]
  10. E. J. McLaurin, V. A. Vlaskin, and D. R. Gamelin, “Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry,” J. Am. Chem. Soc. 133(38), 14978–14980 (2011).
    [Crossref] [PubMed]
  11. D. Chen, Z. Wan, and S. Liu, “Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer,” Anal. Chem. 88(7), 4099–4106 (2016).
    [Crossref] [PubMed]
  12. X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).
  13. X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
    [Crossref]
  14. Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
    [Crossref] [PubMed]
  15. S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
    [Crossref]
  16. Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
    [Crossref]
  17. H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
    [Crossref] [PubMed]
  18. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  19. X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  20. S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
    [Crossref] [PubMed]
  21. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  22. D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
    [Crossref] [PubMed]
  23. Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
    [Crossref]
  24. S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
    [Crossref]
  25. W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
    [Crossref] [PubMed]
  26. A. Sarakovskis and G. Krieke, “Upconversion luminescence in erbium doped transparent oxyfluoride glass ceramics containing hexagonal NaYF4 nanocrystals,” J. Eur. Ceram. Soc. 35(13), 3665–3671 (2015).
    [Crossref]
  27. K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
    [Crossref]
  28. W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
    [Crossref]
  29. C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
    [Crossref]
  30. V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
    [Crossref]
  31. D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
    [Crossref]
  32. A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
    [Crossref]
  33. J. K. Cao, L. P. Chen, W. P. Chen, D. K. Xu, X. Y. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluride scintillating glass ceramics containing KTb2F7 nanocryatsls,” Opt. Mater. Express 6(7), 2201–2206 (2016).
    [Crossref]
  34. F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
    [Crossref]

2017 (2)

P. Kumar, K. Nagpal, and B. K. Gupta, “Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting,” ACS Appl. Mater. Interfaces 9(16), 14301–14308 (2017).
[Crossref] [PubMed]

W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
[Crossref]

2016 (9)

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

J. K. Cao, L. P. Chen, W. P. Chen, D. K. Xu, X. Y. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluride scintillating glass ceramics containing KTb2F7 nanocryatsls,” Opt. Mater. Express 6(7), 2201–2206 (2016).
[Crossref]

J. Liu, R. V. Deun, and A. M. Kaczmarek, “Optical thermometry of MoS2: Eu3+ 2D luminescent nanosheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9937–9941 (2016).
[Crossref]

D. Chen, Z. Wan, and S. Liu, “Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer,” Anal. Chem. 88(7), 4099–4106 (2016).
[Crossref] [PubMed]

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

2015 (4)

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

A. Sarakovskis and G. Krieke, “Upconversion luminescence in erbium doped transparent oxyfluoride glass ceramics containing hexagonal NaYF4 nanocrystals,” J. Eur. Ceram. Soc. 35(13), 3665–3671 (2015).
[Crossref]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

2014 (6)

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

2013 (2)

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
[Crossref]

2012 (3)

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
[Crossref] [PubMed]

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

2011 (3)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

E. J. McLaurin, V. A. Vlaskin, and D. R. Gamelin, “Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry,” J. Am. Chem. Soc. 133(38), 14978–14980 (2011).
[Crossref] [PubMed]

G. Wang, Q. Peng, and Y. Li, “Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications,” Acc. Chem. Res. 44(5), 322–332 (2011).
[Crossref] [PubMed]

2010 (2)

J. C. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

2006 (2)

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Adam, J. L.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Bansal, A.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bednarkiewicz, A.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Bocker, C.

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
[Crossref]

Bu, Y. Y.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Bünzli, J. C.

J. C. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
[Crossref] [PubMed]

Cai, J. J.

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

Cao, J. K.

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

J. K. Cao, L. P. Chen, W. P. Chen, D. K. Xu, X. Y. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluride scintillating glass ceramics containing KTb2F7 nanocryatsls,” Opt. Mater. Express 6(7), 2201–2206 (2016).
[Crossref]

Cao, W.

Cao, Z.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

Cao, Z. M.

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Chen, D.

D. Chen, Z. Wan, and S. Liu, “Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer,” Anal. Chem. 88(7), 4099–4106 (2016).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Chen, F. F.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chen, L. P.

Chen, W. P.

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chen, Y.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Chen, Y. H.

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Dai, S. X.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Deun, R. V.

J. Liu, R. V. Deun, and A. M. Kaczmarek, “Optical thermometry of MoS2: Eu3+ 2D luminescent nanosheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9937–9941 (2016).
[Crossref]

Ding, M.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Driesen, K.

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

Duan, C.

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Duan, C. K.

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Fan, X. P.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Fischer, L. H.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Gai, S.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Gamelin, D. R.

E. J. McLaurin, V. A. Vlaskin, and D. R. Gamelin, “Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry,” J. Am. Chem. Soc. 133(38), 14978–14980 (2011).
[Crossref] [PubMed]

Gao, X.

Gao, Y.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Goldys, E. M.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Gorller-Walrand, C.

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

Guo, C.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Guo, H.

J. K. Cao, L. P. Chen, W. P. Chen, D. K. Xu, X. Y. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluride scintillating glass ceramics containing KTb2F7 nanocryatsls,” Opt. Mater. Express 6(7), 2201–2206 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

Guo, P.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Gupta, B. K.

P. Kumar, K. Nagpal, and B. K. Gupta, “Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting,” ACS Appl. Mater. Interfaces 9(16), 14301–14308 (2017).
[Crossref] [PubMed]

Han, S.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Harms, G. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Heo, J.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Herrmann, A.

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
[Crossref]

Hu, F. F.

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

Huang, F.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Huang, P.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Huang, W.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Idris, N. M.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Jaque, D.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Jayakumar, M. K. G.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Jiang, G.

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Jiang, G. C.

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

Jiang, S.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kaczmarek, A. M.

J. Liu, R. V. Deun, and A. M. Kaczmarek, “Optical thermometry of MoS2: Eu3+ 2D luminescent nanosheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9937–9941 (2016).
[Crossref]

Keshavarizi, A.

W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
[Crossref]

Krieke, G.

A. Sarakovskis and G. Krieke, “Upconversion luminescence in erbium doped transparent oxyfluoride glass ceramics containing hexagonal NaYF4 nanocrystals,” J. Eur. Ceram. Soc. 35(13), 3665–3671 (2015).
[Crossref]

Kumar, P.

P. Kumar, K. Nagpal, and B. K. Gupta, “Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting,” ACS Appl. Mater. Interfaces 9(16), 14301–14308 (2017).
[Crossref] [PubMed]

Li, C.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Li, T.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Li, X. Y.

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

Li, Y.

G. Wang, Q. Peng, and Y. Li, “Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications,” Acc. Chem. Res. 44(5), 322–332 (2011).
[Crossref] [PubMed]

Liang, X.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Lin, C. G.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Lin, H.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Lin, J.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Liu, C.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Liu, C. S.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, J.

J. Liu, R. V. Deun, and A. M. Kaczmarek, “Optical thermometry of MoS2: Eu3+ 2D luminescent nanosheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9937–9941 (2016).
[Crossref]

Liu, Q.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, S.

D. Chen, Z. Wan, and S. Liu, “Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer,” Anal. Chem. 88(7), 4099–4106 (2016).
[Crossref] [PubMed]

Liu, T.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Ma, C.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Ma, H. L.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

McLaurin, E. J.

E. J. McLaurin, V. A. Vlaskin, and D. R. Gamelin, “Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry,” J. Am. Chem. Soc. 133(38), 14978–14980 (2011).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Nagpal, K.

P. Kumar, K. Nagpal, and B. K. Gupta, “Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting,” ACS Appl. Mater. Interfaces 9(16), 14301–14308 (2017).
[Crossref] [PubMed]

Nazabal, V.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Nyk, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Peng, Q.

G. Wang, Q. Peng, and Y. Li, “Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications,” Acc. Chem. Res. 44(5), 322–332 (2011).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qiao, X. S.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Qin, Y. G.

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Rodriguez, V. D.

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

Rüssel, C.

W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
[Crossref]

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
[Crossref]

Samoc, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Sarakovskis, A.

A. Sarakovskis and G. Krieke, “Upconversion luminescence in erbium doped transparent oxyfluoride glass ceramics containing hexagonal NaYF4 nanocrystals,” J. Eur. Ceram. Soc. 35(13), 3665–3671 (2015).
[Crossref]

Seddon, A. B.

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

Seznec, V.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Song, B. A.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Strek, W.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Sun, X. Y.

Suo, H.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

Tylkowski, M.

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
[Crossref]

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Vlaskin, V. A.

E. J. McLaurin, V. A. Vlaskin, and D. R. Gamelin, “Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry,” J. Am. Chem. Soc. 133(38), 14978–14980 (2011).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wan, Z.

D. Chen, Z. Wan, and S. Liu, “Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer,” Anal. Chem. 88(7), 4099–4106 (2016).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Wang, G.

G. Wang, Q. Peng, and Y. Li, “Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications,” Acc. Chem. Res. 44(5), 322–332 (2011).
[Crossref] [PubMed]

Wang, X. F.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Wang, Y. S.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Wawrzynczyk, D.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Wei, X.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Wei, X. T.

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Wisniewski, W.

W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
[Crossref]

Wolfbeis, O. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Xiang, W.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Xu, D. K.

Xu, J.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Xu, W.

Xu, Y. S.

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Yan, X. H.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yang, P.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

Yin, M.

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zhang, X. H.

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Zhang, Y.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhao, L.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

Zhao, X.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Zheng, J.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Zheng, L.

Zhong, J.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Zhou, B.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

Zhou, J. C.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Zhou, S.

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Zhou, S. S.

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

Zhou, Y.

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

Zscheckel, T.

W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
[Crossref]

Acc. Chem. Res. (1)

G. Wang, Q. Peng, and Y. Li, “Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications,” Acc. Chem. Res. 44(5), 322–332 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

P. Kumar, K. Nagpal, and B. K. Gupta, “Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting,” ACS Appl. Mater. Interfaces 9(16), 14301–14308 (2017).
[Crossref] [PubMed]

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7: Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
[Crossref] [PubMed]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref] [PubMed]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Anal. Chem. (1)

D. Chen, Z. Wan, and S. Liu, “Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer,” Anal. Chem. 88(7), 4099–4106 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

K. Driesen, V. K. Tikhomirov, C. Gorller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[Crossref]

C. G. Lin, S. X. Dai, C. Liu, B. A. Song, Y. S. Xu, F. F. Chen, and J. Heo, “Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+,” Appl. Phys. Lett. 100(23), 231910 (2012).
[Crossref]

Chem. Rev. (3)

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114(4), 2343–2389 (2014).
[Crossref] [PubMed]

J. C. Bünzli, “Lanthanide luminescence for biomedical analyses and imaging,” Chem. Rev. 110(5), 2729–2755 (2010).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

Z. M. Cao, S. S. Zhou, G. C. Jiang, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry,” Curr. Appl. Phys. 14(8), 1067–1071 (2014).
[Crossref]

J. Alloys Compd. (4)

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

W. Wisniewski, A. Keshavarizi, T. Zscheckel, and C. Rüssel, “EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7,” J. Alloys Compd. 699, 832–840 (2017).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, and Z. Ji, “Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 638, 21–28 (2015).
[Crossref]

X. Y. Li, X. T. Wei, Y. G. Qin, Y. H. Chen, C. K. Duan, and M. Yin, “The emission rise time of BaY2ZnO5: Eu3+ for non-contact luminescence thermometry,” J. Alloys Compd. 657, 353–357 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

E. J. McLaurin, V. A. Vlaskin, and D. R. Gamelin, “Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry,” J. Am. Chem. Soc. 133(38), 14978–14980 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Eur. Ceram. Soc. (1)

A. Sarakovskis and G. Krieke, “Upconversion luminescence in erbium doped transparent oxyfluoride glass ceramics containing hexagonal NaYF4 nanocrystals,” J. Eur. Ceram. Soc. 35(13), 3665–3671 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9976–9985 (2016).
[Crossref]

J. Liu, R. V. Deun, and A. M. Kaczmarek, “Optical thermometry of MoS2: Eu3+ 2D luminescent nanosheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(42), 9937–9941 (2016).
[Crossref]

J. Mater. Sci. (1)

A. Herrmann, M. Tylkowski, C. Bocker, and C. Rüssel, “Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals,” J. Mater. Sci. 48(18), 6262–6268 (2013).
[Crossref]

J. Nanosci. Nanotechnol. (1)

S. Zhou, G. Jiang, X. Wei, C. Duan, Y. Chen, and M. Yin, “Pr3+-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique,” J. Nanosci. Nanotechnol. 14(5), 3739–3742 (2014).
[Crossref] [PubMed]

Nanoscale (1)

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

V. Seznec, H. L. Ma, X. H. Zhang, V. Nazabal, J. L. Adam, X. S. Qiao, and X. P. Fan, “Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics,” Opt. Mater. 29(4), 371–376 (2006).
[Crossref]

Opt. Mater. Express (1)

RSC Advances (1)

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

S. S. Zhou, X. Y. Li, X. T. Wei, C. K. Duan, and M. Yin, “A new mechanism for temperature sensing based on the thermal population of 7F2 state in Eu3+,” Sens. Actuators B Chem. 231, 641–645 (2016).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

X. Y. Li, G. C. Jiang, S. S. Zhou, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing,” Sensor. Actuat. Biol. Chem. 202, 1065–1069 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The XRD patterns of PG and GC750, compared with the standard data of β-NaGdF4 reference pattern (JCPDS No. 27-0699). (b)Transmittance spectra of PG and GC750. (c) TEM, (d) SAED pattern and (e) HRTEM of GC750.
Fig. 2
Fig. 2 (a) STEM-HAADF images of GC750 with associated (b) Na, (c) Gd, (d) F, (e) Yb and (f) Ho elemental mapping.
Fig. 3
Fig. 3 (a) UC emission spectra of PG and GC750 excited by 980 nm laser. (b) The enlarged UC emission spectra in the range of 350-510 nm.
Fig. 4
Fig. 4 Decay curves monitoring at 540 nm (5S2/5F45I8) of Ho3+ in PG and GC750 samples under the excitation of 980 nm laser.
Fig. 5
Fig. 5 Energy-level diagrams of Yb3+ and Ho3+ ions and the possible UC mechanism.
Fig. 6
Fig. 6 Dependence of UC emission intensities on pump power for (a) PG and (b) GC750.
Fig. 7
Fig. 7 (a) Normalized UC emission spectra of GC750 under the excitation of 980 nm laser at various temperatures from 390 K to 773 K. (b) Fluorescence intensity ratio data as a function of temperature for GC750. (c) Relative sensitivity and absolute sensitivity curves of GC750 in the temperature range of 390-773 K.

Tables (1)

Tables Icon

Table 1 FIR-based optical thermometry utilizing different lanthanide ions with the energy gap ΔE and the relative sensitivity SR.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=Bexp( ΔE k B T )
S A =| dR dT |=R ΔE k B T 2
S R =| 1 R dR dT |= ΔE k B T 2

Metrics