Abstract

Photoluminescence (PL) of Sn2+ in oxide glasses is affected by the local coordination field because of the electrons in the outermost shell. Not only the emission energy varies depending on the local coordination, but also the transparency, and it is worth examining the local distribution of Sn2+ cations in oxide glasses, which have a tendency toward phase separation, especially in an ionic (phosphate)–covalent (borate) binary system. Here, we report the structural changes in zinc borophosphate glass and the PL properties of Sn2+ in oxide glasses. The building blocks of the main glass network vary depending on the chemical composition. We found that the Sn2+ species in B2O3-rich glasses differ from those in P2O5-rich glasses, as observed in the optical absorption, PL peaks, and PL decay constants. 119Sn Mössbauer spectra indicate that isomer shifts of Sn2+ also affect the local coordination change depending on the chemical composition. According to these results for the Sn2+ center, we conclude that Sn2+ centers are homogeneously dispersed in the borophosphate network without localization around the phosphate region.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass

Hirokazu Masai, Toshiro Tanimoto, Takumi Fujiwara, Syuji Matsumoto, Yomei Tokuda, and Toshinobu Yoko
Opt. Express 20(25) 27319-27326 (2012)

High energy-transfer rate from Sn2+ to Mn2+ in phosphate glasses

Hirokazu Masai, Yusuke Hino, Takayuki Yanagida, Yutaka Fujimoto, and Yomei Tokuda
Opt. Mater. Express 5(3) 617-622 (2015)

Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid

Hirokazu Masai, Akitoshi Koreeda, Yasuhiro Fujii, Takahiro Ohkubo, and Shinji Kohara
Opt. Mater. Express 6(6) 1827-1836 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
    [Crossref]
  2. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd edition (CRC Press, 2007).
  3. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifier at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [Crossref]
  4. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
    [Crossref]
  5. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  6. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
    [Crossref]
  7. Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
    [Crossref] [PubMed]
  8. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
    [Crossref]
  9. A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
    [Crossref]
  10. K. Kajihara, S. Kuwatani, and K. Kanamura, “Sol–gel synthesis of rare-earth and phosphorus codoped monolithic silica glasses from a cosolvent-free phase-separating system,” Appl. Phys. Express 5(1), 012601 (2012).
    [Crossref]
  11. D. Ehrt, “Photoluminescence in the UV–VIS region of polyvalent ions in glasses,” J. Non-Cryst. Solids 348, 22–29 (2004).
    [Crossref]
  12. R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
    [Crossref]
  13. M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
    [Crossref]
  14. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
    [Crossref]
  15. J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
    [Crossref]
  16. H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO-ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
    [Crossref]
  17. H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
    [Crossref]
  18. H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
    [Crossref] [PubMed]
  19. H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
    [Crossref] [PubMed]
  20. H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
    [Crossref]
  21. H. Masai, A. Koreeda, Y. Fujii, T. Ohkubo, and S. Kohara, “Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid,” Opt. Mater. Express 6(6), 1827–1836 (2016).
    [Crossref]
  22. A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
    [Crossref]
  23. H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
    [Crossref]
  24. H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
    [Crossref]
  25. R. K. Brow, “An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses,” J. Non-Cryst. Solids 194(3), 267–273 (1996).
    [Crossref]
  26. P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
    [Crossref]
  27. L. Koudelka and P. Mošner, “Borophosphate glasses of the ZnO-B2O3-P2O5 system,” Mater. Lett. 42(3), 194–199 (2000).
    [Crossref]
  28. L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
    [Crossref]
  29. M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
    [Crossref]
  30. N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy (Chapman and Hall Ltd., 1971), Chapter 14.
  31. JCPDS Card No. 29–1390, ICCD.
  32. R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
    [Crossref]
  33. G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
    [Crossref]
  34. J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
    [Crossref]
  35. L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
    [Crossref]
  36. D. Zielniok, C. Cramer, and H. Eckert, “Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O-B2O3-P2O5,” Chem. Mater. 19(13), 3162–3170 (2007).
    [Crossref]
  37. D. Raskar, M. T. Rinke, and H. Eckert, “The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x,” J. Phys. Chem. C 112(32), 12530–12539 (2008).
    [Crossref]
  38. R. Christensen, G. Olson, and S. W. Martin, “Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies,” J. Phys. Chem. B 117(7), 2169–2179 (2013).
    [Crossref] [PubMed]
  39. W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc. 54(10), 3841–3851 (1932).
    [Crossref]
  40. L. Koudelka and P. Mošner, “Study of the structure and properties of Pb-Zn borophosphate glasses,” J. Non-Cryst. Solids 293–295, 635–641 (2001).
    [Crossref]
  41. H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
    [Crossref]
  42. K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).
  43. A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).
  44. I. A. Courtney, R. A. Dunlap, and J. R. Dahn, “In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass,” Electrochim. Acta 1999(1-2), 51–58 (1999).
    [Crossref]
  45. E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).
  46. J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
    [Crossref]
  47. E. C. Ziemath, B. Z. Saggioro, and J. S. Fossa, “Physical properties of silicate glasses doped with SnO2,” J. Non-Cryst. Solids 351(52-54), 3870–3878 (2005).
    [Crossref]
  48. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
    [Crossref]

2017 (1)

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

2016 (2)

H. Masai, A. Koreeda, Y. Fujii, T. Ohkubo, and S. Kohara, “Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid,” Opt. Mater. Express 6(6), 1827–1836 (2016).
[Crossref]

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

2015 (1)

H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
[Crossref]

2013 (3)

R. Christensen, G. Olson, and S. W. Martin, “Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies,” J. Phys. Chem. B 117(7), 2169–2179 (2013).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

2012 (5)

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO-ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

K. Kajihara, S. Kuwatani, and K. Kanamura, “Sol–gel synthesis of rare-earth and phosphorus codoped monolithic silica glasses from a cosolvent-free phase-separating system,” Appl. Phys. Express 5(1), 012601 (2012).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

2011 (1)

P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
[Crossref]

2010 (1)

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

2009 (2)

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

2008 (1)

D. Raskar, M. T. Rinke, and H. Eckert, “The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x,” J. Phys. Chem. C 112(32), 12530–12539 (2008).
[Crossref]

2007 (3)

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

D. Zielniok, C. Cramer, and H. Eckert, “Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O-B2O3-P2O5,” Chem. Mater. 19(13), 3162–3170 (2007).
[Crossref]

2005 (2)

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

E. C. Ziemath, B. Z. Saggioro, and J. S. Fossa, “Physical properties of silicate glasses doped with SnO2,” J. Non-Cryst. Solids 351(52-54), 3870–3878 (2005).
[Crossref]

2004 (4)

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

D. Ehrt, “Photoluminescence in the UV–VIS region of polyvalent ions in glasses,” J. Non-Cryst. Solids 348, 22–29 (2004).
[Crossref]

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

2003 (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

2001 (1)

L. Koudelka and P. Mošner, “Study of the structure and properties of Pb-Zn borophosphate glasses,” J. Non-Cryst. Solids 293–295, 635–641 (2001).
[Crossref]

2000 (4)

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

L. Koudelka and P. Mošner, “Borophosphate glasses of the ZnO-B2O3-P2O5 system,” Mater. Lett. 42(3), 194–199 (2000).
[Crossref]

1999 (1)

I. A. Courtney, R. A. Dunlap, and J. R. Dahn, “In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass,” Electrochim. Acta 1999(1-2), 51–58 (1999).
[Crossref]

1997 (1)

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

1996 (1)

R. K. Brow, “An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses,” J. Non-Cryst. Solids 194(3), 267–273 (1996).
[Crossref]

1995 (1)

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[Crossref]

1993 (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

1992 (1)

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

1991 (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifier at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

1986 (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

1985 (1)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

1977 (1)

A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).

1975 (1)

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

1966 (1)

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

1932 (1)

W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc. 54(10), 3841–3851 (1932).
[Crossref]

Arai, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barnett, B.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Bekaert, E.

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

Blasse, G.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Bocquet, J. P.

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

Boehm, L.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Brow, R. K.

R. K. Brow, “An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses,” J. Non-Cryst. Solids 194(3), 267–273 (1996).
[Crossref]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[Crossref]

Cabrera, C. R.

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

Carl, G.

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

Chen, B.

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

Chen, P.

P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
[Crossref]

Christensen, R.

R. Christensen, G. Olson, and S. W. Martin, “Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies,” J. Phys. Chem. B 117(7), 2169–2179 (2013).
[Crossref] [PubMed]

Chu, Y. Y.

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

Courtney, I. A.

I. A. Courtney, R. A. Dunlap, and J. R. Dahn, “In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass,” Electrochim. Acta 1999(1-2), 51–58 (1999).
[Crossref]

Cramer, C.

D. Zielniok, C. Cramer, and H. Eckert, “Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O-B2O3-P2O5,” Chem. Mater. 19(13), 3162–3170 (2007).
[Crossref]

Dahn, J. R.

I. A. Courtney, R. A. Dunlap, and J. R. Dahn, “In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass,” Electrochim. Acta 1999(1-2), 51–58 (1999).
[Crossref]

Delevoye, L.

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

Donaldson, J. D.

A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).

Donoghue, M. T.

A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).

Duffy, J. A.

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

Dunlap, R. A.

I. A. Courtney, R. A. Dunlap, and J. R. Dahn, “In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass,” Electrochim. Acta 1999(1-2), 51–58 (1999).
[Crossref]

Eckert, H.

D. Raskar, M. T. Rinke, and H. Eckert, “The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x,” J. Phys. Chem. C 112(32), 12530–12539 (2008).
[Crossref]

D. Zielniok, C. Cramer, and H. Eckert, “Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O-B2O3-P2O5,” Chem. Mater. 19(13), 3162–3170 (2007).
[Crossref]

Ehrt, D.

D. Ehrt, “Photoluminescence in the UV–VIS region of polyvalent ions in glasses,” J. Non-Cryst. Solids 348, 22–29 (2004).
[Crossref]

Emery, G. T.

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

Fachini, H. E.

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

Fossa, J. S.

E. C. Ziemath, B. Z. Saggioro, and J. S. Fossa, “Physical properties of silicate glasses doped with SnO2,” J. Non-Cryst. Solids 351(52-54), 3870–3878 (2005).
[Crossref]

Fujii, Y.

Fujimoto, Y.

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Fujiwara, T.

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

Gelder, D.

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

Greengrass, J.

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Hartmann, P.

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

Hirano, M.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Hoppe, U.

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

Hosono, H.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Ikushima, A. J.

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

Inoue, S.

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO-ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

Ishii, Y.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Jang, K.

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

Jayasimhadri, M.

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

Jeong, J.-H.

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

Jiménez, J. A.

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

Jing, W.

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

Johnson, C. E.

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

Johnson, J. A.

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Kajihara, K.

K. Kajihara, S. Kuwatani, and K. Kanamura, “Sol–gel synthesis of rare-earth and phosphorus codoped monolithic silica glasses from a cosolvent-free phase-separating system,” Appl. Phys. Express 5(1), 012601 (2012).
[Crossref]

Kanamura, K.

K. Kajihara, S. Kuwatani, and K. Kanamura, “Sol–gel synthesis of rare-earth and phosphorus codoped monolithic silica glasses from a cosolvent-free phase-separating system,” Appl. Phys. Express 5(1), 012601 (2012).
[Crossref]

Kanemitsu, Y.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

Kistner, O. C.

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

Kohara, S.

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

H. Masai, A. Koreeda, Y. Fujii, T. Ohkubo, and S. Kohara, “Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid,” Opt. Mater. Express 6(6), 1827–1836 (2016).
[Crossref]

Koreeda, A.

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

H. Masai, A. Koreeda, Y. Fujii, T. Ohkubo, and S. Kohara, “Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid,” Opt. Mater. Express 6(6), 1827–1836 (2016).
[Crossref]

Koshimizu, M.

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Koskentalo, T.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Koudelka, L.

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

L. Koudelka and P. Mošner, “Study of the structure and properties of Pb-Zn borophosphate glasses,” J. Non-Cryst. Solids 293–295, 635–641 (2001).
[Crossref]

L. Koudelka and P. Mošner, “Borophosphate glasses of the ZnO-B2O3-P2O5 system,” Mater. Lett. 42(3), 194–199 (2000).
[Crossref]

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Kuwatani, S.

K. Kajihara, S. Kuwatani, and K. Kanamura, “Sol–gel synthesis of rare-earth and phosphorus codoped monolithic silica glasses from a cosolvent-free phase-separating system,” Appl. Phys. Express 5(1), 012601 (2012).
[Crossref]

Lee, H. S.

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

Leskelä, M.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Li, S.

P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
[Crossref]

Li, Y.

P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
[Crossref]

Liu, H.

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

Lysenko, S.

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

Martin, S. W.

R. Christensen, G. Olson, and S. W. Martin, “Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies,” J. Phys. Chem. B 117(7), 2169–2179 (2013).
[Crossref] [PubMed]

Masai, H.

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

H. Masai, A. Koreeda, Y. Fujii, T. Ohkubo, and S. Kohara, “Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid,” Opt. Mater. Express 6(6), 1827–1836 (2016).
[Crossref]

H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
[Crossref]

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Matsuishi, S.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Matsumoto, S.

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Mibu, K.

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
[Crossref]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifier at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

Miura, T.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Montagne, L.

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

Mosner, P.

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

Mošner, P.

L. Koudelka and P. Mošner, “Study of the structure and properties of Pb-Zn borophosphate glasses,” J. Non-Cryst. Solids 293–295, 635–641 (2001).
[Crossref]

L. Koudelka and P. Mošner, “Borophosphate glasses of the ZnO-B2O3-P2O5 system,” Mater. Lett. 42(3), 194–199 (2000).
[Crossref]

Murata, S.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Myers, S. T.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[Crossref]

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Nomura, K.

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO-ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

Ohkubo, T.

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

H. Masai, A. Koreeda, Y. Fujii, T. Ohkubo, and S. Kohara, “Photoluminescence of Sn2+-centre as probe of transient state of supercooled liquid,” Opt. Mater. Express 6(6), 1827–1836 (2016).
[Crossref]

Okada, G.

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

Okamura, S.

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

Olson, G.

R. Christensen, G. Olson, and S. W. Martin, “Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies,” J. Phys. Chem. B 117(7), 2169–2179 (2013).
[Crossref] [PubMed]

Onodera, Y.

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

Otaigbe, J. U.

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

Oto, M.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Palavit, G.

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

Paul, A.

A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Perlman, M. L.

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

Phifer, C. C.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[Crossref]

Pruski, M.

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

Qiang, S.

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

Qiao, W. J.

P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
[Crossref]

Raskar, D.

D. Raskar, M. T. Rinke, and H. Eckert, “The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x,” J. Phys. Chem. C 112(32), 12530–12539 (2008).
[Crossref]

Reisfeld, R.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Resto, O.

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

Rinke, M. T.

D. Raskar, M. T. Rinke, and H. Eckert, “The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x,” J. Phys. Chem. C 112(32), 12530–12539 (2008).
[Crossref]

Saggioro, B. Z.

E. C. Ziemath, B. Z. Saggioro, and J. S. Fossa, “Physical properties of silicate glasses doped with SnO2,” J. Non-Cryst. Solids 351(52-54), 3870–3878 (2005).
[Crossref]

Saito, K.

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

Saitoh, A.

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Sales, B. C.

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

Segawa, H.

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO-ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

Shubin, W.

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

Skuja, L.

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

Subcik, J.

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

Suzuki, Y.

H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
[Crossref]

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

Takahashi, Y.

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Tallant, D. R.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[Crossref]

Tanimoto, T.

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

Teramura, K.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

Thomas, M. J. K.

A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Tilley, B. P.

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

Tischendorf, B.

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

Tokuda, Y.

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

Torimoto, A.

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Vogel, J.

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

Walter, G.

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Wattiaux, A.

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

Wiench, J. W.

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

Williams, K. F. E.

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

Yamada, Y.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

Yanagida, T.

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Yi, S.-S.

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

Yoko, T.

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Yuhua, L.

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

Zachariasen, W. H.

W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc. 54(10), 3841–3851 (1932).
[Crossref]

Zhihong, L.

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

Zielniok, D.

D. Zielniok, C. Cramer, and H. Eckert, “Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O-B2O3-P2O5,” Chem. Mater. 19(13), 3162–3170 (2007).
[Crossref]

Ziemath, E. C.

E. C. Ziemath, B. Z. Saggioro, and J. S. Fossa, “Physical properties of silicate glasses doped with SnO2,” J. Non-Cryst. Solids 351(52-54), 3870–3878 (2005).
[Crossref]

Appl. Phys. Express (2)

K. Kajihara, S. Kuwatani, and K. Kanamura, “Sol–gel synthesis of rare-earth and phosphorus codoped monolithic silica glasses from a cosolvent-free phase-separating system,” Appl. Phys. Express 5(1), 012601 (2012).
[Crossref]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Appl. Phys. Lett. (1)

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

H. Masai, Y. Suzuki, T. Yanagida, and K. Mibu, “Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and ar conditions,” Bull. Chem. Soc. Jpn. 88(8), 1047–1053 (2015).
[Crossref]

Chem. Lett. (2)

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Localized Sn2+ emission center independent of the optical basicity of zinc phosphate glass,” Chem. Lett. 42(2), 132–134 (2013).
[Crossref]

A. Saitoh, S. Murata, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of phosphorus co-doping effect on photoluminescence in Ce3+-activated SiO2 glasses: determination of solvation shell structure by pulsed EPR,” Chem. Lett. 34(8), 1116–1117 (2005).
[Crossref]

Chem. Mater. (1)

D. Zielniok, C. Cramer, and H. Eckert, “Structure/property correlations in ion-conducting mixed-network former glasses: solid-state NMR studies of the system Na2O-B2O3-P2O5,” Chem. Mater. 19(13), 3162–3170 (2007).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Electrochim. Acta (1)

I. A. Courtney, R. A. Dunlap, and J. R. Dahn, “In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass,” Electrochim. Acta 1999(1-2), 51–58 (1999).
[Crossref]

Geochim. Cosmochim. Acta (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

Glass Phys. Chem. (1)

P. Chen, S. Li, W. J. Qiao, and Y. Li, “Structure and cystallization of ZnO-B2O3-P2O5 glasses,” Glass Phys. Chem. 37(1), 29–33 (2011).
[Crossref]

J. Alloys Compd. (1)

L. Zhihong, W. Jing, L. Yuhua, W. Shubin, and S. Qiang, “The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses,” J. Alloys Compd. 430(1-2), 257–261 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc. 54(10), 3841–3851 (1932).
[Crossref]

J. Appl. Phys. (3)

M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S.-S. Yi, and J.-H. Jeong, “White light generation from Dy3+ -doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106(1), 013105 (2009).
[Crossref]

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

J. Ceram. Soc. Jpn. (1)

A. Torimoto, H. Masai, Y. Tokuda, T. Yanagida, G. Okada, and K. Mibu, “Correlation between the emission properties of Sn2+ center and the chemical composition of ZnO–P2O5 glasses,” J. Ceram. Soc. Jpn. 124, 554–558 (2016).
[Crossref]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifier at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

J. Lumin. (1)

J. A. Jiménez, S. Lysenko, H. Liu, H. E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129(12), 1546–1554 (2009).
[Crossref]

J. Non-Cryst. Solids (12)

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO-ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

D. Ehrt, “Photoluminescence in the UV–VIS region of polyvalent ions in glasses,” J. Non-Cryst. Solids 348, 22–29 (2004).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000).
[Crossref]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The short-range structure of zinc polyphosphate glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[Crossref]

G. Walter, U. Hoppe, J. Vogel, G. Carl, and P. Hartmann, “The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR,” J. Non-Cryst. Solids 333(3), 252–262 (2004).
[Crossref]

J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe, and B. C. Sales, “Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance,” J. Non-Cryst. Solids 263–264, 101–110 (2000).
[Crossref]

L. Koudelka, J. Subcik, P. Mosner, L. Montagne, and L. Delevoye, “Structure and properties of Sb2O3-containing zinc borophosphate glasses,” J. Non-Cryst. Solids 353, 1828–1833 (2007).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Cryst. Solids 358(2), 265–269 (2012).
[Crossref]

R. K. Brow, “An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses,” J. Non-Cryst. Solids 194(3), 267–273 (1996).
[Crossref]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

L. Koudelka and P. Mošner, “Study of the structure and properties of Pb-Zn borophosphate glasses,” J. Non-Cryst. Solids 293–295, 635–641 (2001).
[Crossref]

E. C. Ziemath, B. Z. Saggioro, and J. S. Fossa, “Physical properties of silicate glasses doped with SnO2,” J. Non-Cryst. Solids 351(52-54), 3870–3878 (2005).
[Crossref]

J. Non-Crystal. Solids (2)

E. Bekaert, L. Montagne, L. Delevoye, G. Palavit, and A. Wattiaux, “NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses”, J. Non-Crystal. Solids 345, 70–74 (2004).

K. F. E. Williams, C. E. Johnson, J. Greengrass, B. P. Tilley, D. Gelder, and J. A. Johnson, “Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by M Sssbauer spectroscopy”, J. Non-Crystal. Solids 211, 164–172 (1997).

J. Phys. Chem. B (1)

R. Christensen, G. Olson, and S. W. Martin, “Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies,” J. Phys. Chem. B 117(7), 2169–2179 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

D. Raskar, M. T. Rinke, and H. Eckert, “The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x,” J. Phys. Chem. C 112(32), 12530–12539 (2008).
[Crossref]

J. Phys. Chem. Solids (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

J. Solid State Chem. (2)

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence Properties of Eu2+, Sn2+, and Pb2+ in SrB6010 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Mater. Lett. (1)

L. Koudelka and P. Mošner, “Borophosphate glasses of the ZnO-B2O3-P2O5 system,” Mater. Lett. 42(3), 194–199 (2000).
[Crossref]

Nat. Commun. (1)

Y. Onodera, S. Kohara, H. Masai, A. Koreeda, S. Okamura, and T. Ohkubo, “Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass,” Nat. Commun. 8, 15449 (2017), doi:.
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Chem. Glasses (1)

A. Paul, J. D. Donaldson, M. T. Donoghue, and M. J. K. Thomas, “Infrared and Sn-119 Mössbauer -spectra of tin borate glasses,” Phys. Chem. Glasses 18, 125–127 (1977).

Phys. Rev. Lett. (1)

J. P. Bocquet, Y. Y. Chu, O. C. Kistner, M. L. Perlman, and G. T. Emery, “Chemical effect on outer-shell internal conversion in Sn199; interpretation of the Mössbauer isomer shift in tin,” Phys. Rev. Lett. 17(15), 809–813 (1966).
[Crossref]

Sci. Rep. (1)

H. Masai, Y. Yamada, Y. Suzuki, K. Teramura, Y. Kanemitsu, and T. Yoko, “Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass,” Sci. Rep. 3(1), 3541 (2013).
[Crossref] [PubMed]

Other (3)

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd edition (CRC Press, 2007).

N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy (Chapman and Hall Ltd., 1971), Chapter 14.

JCPDS Card No. 29–1390, ICCD.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) xSZBP glass system and photographs of several glasses. (b) XRD patterns of 0.1SnO-doped 60ZnO-20B2O3-20P2O5 glass and Zn3(PO4)2 (JCPDS # 29-1390).
Fig. 2
Fig. 2 (a) 31P MAS NMR spectra of the xSZBP glasses. (b) Qn unit ratios of xSZBP glasses as a function of P2O5 content. (c) Number of Qn unit ratios of xSZBP glasses as a function of P2O5 content.
Fig. 3
Fig. 3 (a) 11B MAS NMR spectra of the xSZBP glasses (x = 0, 2, 4, 6, 8, 10, 30, and 35). (b) Ratios of borate units as a function of P2O5 content. (c) Number of BO3/2 and BO4/2 units of xSZBP glasses as a function of P2O5 content.
Fig. 4
Fig. 4 (a) 119Sn Mössbauer spectra of the xSZBP glasses (x = 0, 4, 8, 10, and 40). (b) Sn2+ ratio in xSZBP glasses as a function of P2O5 content. The isomer shift (IS) and quadrupole splitting (QS) of Sn2+ are also shown.
Fig. 5
Fig. 5 (a) Optical absorption spectra of the xSZBP glasses. Dashed line is an extrapolation line for determination of the optical band gap Egopt. (b) Egopt of the xSZBP glasses as a function of P2O5 content.
Fig. 6
Fig. 6 (a) PL-PLE contour plots of the xSZBP glasses (x = 0, 8, 30, and 40). (b) PL and PLE spectra of the 0SZBP and 40SZBP glasses. (c) Peak energies of the PL and PLE of the xSZBP glasses as a function of P2O5 fraction.
Fig. 7
Fig. 7 PL decay curves of the xSZBP glasses (x = 0, 2, 4, 6, 8, 10, 30, 35, and 40). Excitation energy was 4.43 eV (280 nm).

Metrics