Abstract

Shaping light in second order nonlinear interaction is a compact way of controlling both shape and frequency of the output, a desirable trait for many different applications such as optical communication, particle manipulation, microscopy, spectroscopy, and quantum information. The use of patterned nonlinear crystals, combining holographic methods with electric field poling, has proven a useful way to create arbitrary one- and two-dimensional shapes, as well as beams that follow curved trajectories. Using structured light as an input beam has also been shown to produce light with special properties, such as vortex beams carrying orbital angular momentum, curved Airy beams, and others. We review the latest advances in the field.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear generation of Airy vortex beam

Hui Li, Haigang Liu, and Xianfeng Chen
Opt. Express 26(16) 21204-21209 (2018)

Shaping the fundamental and second harmonic beams using patterned facets in lithium triborate

Danveer Singh, Roy Shiloh, and Ady Arie
Opt. Mater. Express 8(9) 2654-2661 (2018)

Shaping light with nonlinear metasurfaces

Shay Keren-Zur, Lior Michaeli, Haim Suchowski, and Tal Ellenbogen
Adv. Opt. Photon. 10(1) 309-353 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [Crossref] [PubMed]
  2. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
    [Crossref] [PubMed]
  3. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  4. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  5. A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, “Dynamic control of light beams in second harmonic generation,” Opt. Lett. 40(9), 1944–1947 (2015).
    [Crossref] [PubMed]
  6. G. Imeshev, M. Proctor, and M. M. Fejer, “Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings,” Opt. Lett. 23(9), 673–675 (1998).
    [Crossref] [PubMed]
  7. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” in Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO ’02. Technical Diges (Opt. Soc. America, 2002), pp. 377–378.
    [Crossref]
  8. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
    [Crossref]
  9. A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett. 36(15), 3015–3017 (2011).
    [Crossref] [PubMed]
  10. X.-H. Hong, B. Yang, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “Nonlinear Volume Holography for Wave-Front Engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
    [Crossref] [PubMed]
  11. C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
    [Crossref] [PubMed]
  12. B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
    [Crossref] [PubMed]
  13. A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
    [Crossref]
  14. S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
    [Crossref] [PubMed]
  15. A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bull. 60(16), 1403–1415 (2015).
    [Crossref]
  16. N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
    [Crossref] [PubMed]
  17. K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
    [Crossref] [PubMed]
  18. D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
    [Crossref] [PubMed]
  19. R. Remez and A. Arie, “Super-narrow frequency conversion,” Optica 2(5), 472 (2015).
    [Crossref]
  20. S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “On-axis shaping of second-harmonic beams,” Laser Photonics Rev. 9(6), L40–L44 (2015).
    [Crossref]
  21. I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010).
    [Crossref] [PubMed]
  22. S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second-harmonic beams with switchable curved trajectories,” Optica 4(1), 153 (2017).
    [Crossref]
  23. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  24. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [Crossref]
  25. D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).
  27. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5(6), 967–969 (1966).
    [Crossref] [PubMed]
  28. J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55(4), 599–601 (1967).
    [Crossref]
  29. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18(21), 3661–3669 (1979).
    [Crossref] [PubMed]
  30. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
    [Crossref]
  31. D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
    [Crossref]
  32. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [Crossref]
  33. A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
    [Crossref]
  34. M. V. Berry and N. L. Balazs, “Nonspeading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  35. E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
    [Crossref] [PubMed]
  36. L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
    [Crossref] [PubMed]
  37. E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
    [Crossref] [PubMed]
  38. I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
    [Crossref] [PubMed]
  39. S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
    [Crossref] [PubMed]
  40. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
    [Crossref]
  41. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D Appl. Phys. 28(9), 1747–1763 (1995).
    [Crossref]
  42. Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, “Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion,” Appl. Phys. Lett. 88, 011103 (2006).
  43. X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
    [Crossref] [PubMed]
  44. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
    [Crossref]
  45. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
    [Crossref] [PubMed]
  46. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
    [Crossref]
  47. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  48. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
    [Crossref] [PubMed]
  49. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
    [Crossref]
  50. F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
    [Crossref]
  51. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
    [Crossref] [PubMed]
  52. A. Leshem, G. Meshulam, G. Porat, and A. Arie, “Adiabatic second-harmonic generation,” Opt. Lett. 41(6), 1229–1232 (2016).
    [Crossref] [PubMed]
  53. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319 (2011).
    [Crossref]
  54. A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4,” Appl. Phys. Lett. 103(25), 252905 (2013).
    [Crossref]
  55. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
    [Crossref]
  56. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20(18), 20002–20010 (2012).
    [Crossref] [PubMed]
  57. S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second harmonic beams with switchable curved trajectories,” Optica 4, 153—156 (2016).
  58. C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, “Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media,” Opt. Express 24(14), 15940–15953 (2016).
    [Crossref] [PubMed]
  59. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
    [Crossref] [PubMed]
  60. A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
    [Crossref] [PubMed]
  61. B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “Nonlinear Image Formation by Optical Superlattices,” https://arxiv.org/abs/1511.07121 (2015).
  62. A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
    [Crossref]
  63. A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
    [Crossref]
  64. B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
    [Crossref] [PubMed]
  65. A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, Single-Photon Generation and Detection - Physics and Applications, Experimental Methods in the Physical Sciences (Elsevier, 2013), Vol. 45.
  66. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  67. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
    [Crossref]
  68. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
    [Crossref]
  69. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
    [Crossref] [PubMed]
  70. A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
    [Crossref]
  71. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005).
    [Crossref]
  72. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, “Quasi-phase-matching engineering for spatial control of entangled two-photon states,” Opt. Lett. 29(4), 376–378 (2004).
    [Crossref] [PubMed]
  73. H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
    [Crossref] [PubMed]
  74. E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangled photons,” Opt. Express 21(6), 6689–6696 (2013).
    [Crossref] [PubMed]
  75. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
    [Crossref] [PubMed]
  76. Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
    [Crossref]
  77. L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, “Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals,” Opt. Express 23(2), 1203–1212 (2015).
    [Crossref] [PubMed]
  78. M. V. Berry, “Stable and unstable Airy-related caustics and beams,” J. Opt. 19(5), 055601 (2017).
    [Crossref]
  79. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  80. I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
    [Crossref]
  81. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  82. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
    [Crossref]
  83. S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
    [Crossref]
  84. W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
    [Crossref]
  85. H. Liu, J. Li, X. Zhao, Y. Zheng, and X. Chen, “Nonlinear Raman-Nath second harmonic generation with structured fundamental wave,” Opt. Express 24(14), 15666–15671 (2016).
    [Crossref] [PubMed]
  86. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett. 106(21), 213903 (2011).
    [Crossref] [PubMed]
  87. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
    [Crossref] [PubMed]
  88. I. Dolev and A. Arie, “Three wave mixing of airy beams in a quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 97, 171102 (2010).
    [Crossref]
  89. I. Dolev, A. Libster, and A. Arie, “Self-accelerating parabolic beams in quadratic nonlinear media,” Appl. Phys. Lett. 101, 101109 (2012).
    [Crossref]
  90. M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett. 33(15), 1678–1680 (2008).
    [Crossref] [PubMed]
  91. T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
    [Crossref] [PubMed]
  92. C. H. Monken, P. H. S. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998).
    [Crossref]
  93. J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21(18), 20544–20555 (2013).
    [Crossref] [PubMed]
  94. E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19(7), 5833–5838 (2011).
    [Crossref] [PubMed]
  95. R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002).
    [Crossref]
  96. T. Latychevskaia and H.-W. Fink, “Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams,” Sci. Rep. 6(1), 26312 (2016).
    [Crossref] [PubMed]

2017 (2)

2016 (8)

A. Leshem, G. Meshulam, G. Porat, and A. Arie, “Adiabatic second-harmonic generation,” Opt. Lett. 41(6), 1229–1232 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[Crossref] [PubMed]

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[Crossref] [PubMed]

H. Liu, J. Li, X. Zhao, Y. Zheng, and X. Chen, “Nonlinear Raman-Nath second harmonic generation with structured fundamental wave,” Opt. Express 24(14), 15666–15671 (2016).
[Crossref] [PubMed]

C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, “Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media,” Opt. Express 24(14), 15940–15953 (2016).
[Crossref] [PubMed]

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second harmonic beams with switchable curved trajectories,” Optica 4, 153—156 (2016).

T. Latychevskaia and H.-W. Fink, “Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams,” Sci. Rep. 6(1), 26312 (2016).
[Crossref] [PubMed]

2015 (9)

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “On-axis shaping of second-harmonic beams,” Laser Photonics Rev. 9(6), L40–L44 (2015).
[Crossref]

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bull. 60(16), 1403–1415 (2015).
[Crossref]

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, “Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals,” Opt. Express 23(2), 1203–1212 (2015).
[Crossref] [PubMed]

A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, “Dynamic control of light beams in second harmonic generation,” Opt. Lett. 40(9), 1944–1947 (2015).
[Crossref] [PubMed]

R. Remez and A. Arie, “Super-narrow frequency conversion,” Optica 2(5), 472 (2015).
[Crossref]

S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
[Crossref] [PubMed]

2014 (4)

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[Crossref] [PubMed]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

X.-H. Hong, B. Yang, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “Nonlinear Volume Holography for Wave-Front Engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

2013 (11)

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4,” Appl. Phys. Lett. 103(25), 252905 (2013).
[Crossref]

E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangled photons,” Opt. Express 21(6), 6689–6696 (2013).
[Crossref] [PubMed]

J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21(18), 20544–20555 (2013).
[Crossref] [PubMed]

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

2012 (6)

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

I. Dolev, A. Libster, and A. Arie, “Self-accelerating parabolic beams in quadratic nonlinear media,” Appl. Phys. Lett. 101, 101109 (2012).
[Crossref]

2011 (8)

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19(7), 5833–5838 (2011).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett. 36(15), 3015–3017 (2011).
[Crossref] [PubMed]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319 (2011).
[Crossref]

I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett. 106(21), 213903 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

2010 (2)

I. Dolev and A. Arie, “Three wave mixing of airy beams in a quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 97, 171102 (2010).
[Crossref]

I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010).
[Crossref] [PubMed]

2009 (3)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
[Crossref]

I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
[Crossref]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

2008 (3)

D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett. 33(15), 1678–1680 (2008).
[Crossref] [PubMed]

2007 (4)

C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
[Crossref] [PubMed]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2005 (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005).
[Crossref]

2004 (3)

2002 (1)

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002).
[Crossref]

2001 (2)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

2000 (4)

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
[Crossref]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

1999 (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

1998 (4)

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

C. H. Monken, P. H. S. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998).
[Crossref]

G. Imeshev, M. Proctor, and M. M. Fejer, “Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings,” Opt. Lett. 23(9), 673–675 (1998).
[Crossref] [PubMed]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
[Crossref] [PubMed]

1997 (1)

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

1996 (1)

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

1995 (4)

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D Appl. Phys. 28(9), 1747–1763 (1995).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

1979 (2)

M. V. Berry and N. L. Balazs, “Nonspeading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18(21), 3661–3669 (1979).
[Crossref] [PubMed]

1967 (1)

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55(4), 599–601 (1967).
[Crossref]

1966 (1)

1948 (1)

D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Abramochkin, E.

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Alexandrescu, A.

Alieva, T.

Allen, L.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Arie, A.

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second-harmonic beams with switchable curved trajectories,” Optica 4(1), 153 (2017).
[Crossref]

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second harmonic beams with switchable curved trajectories,” Optica 4, 153—156 (2016).

A. Leshem, G. Meshulam, G. Porat, and A. Arie, “Adiabatic second-harmonic generation,” Opt. Lett. 41(6), 1229–1232 (2016).
[Crossref] [PubMed]

S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
[Crossref] [PubMed]

A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, “Dynamic control of light beams in second harmonic generation,” Opt. Lett. 40(9), 1944–1947 (2015).
[Crossref] [PubMed]

R. Remez and A. Arie, “Super-narrow frequency conversion,” Optica 2(5), 472 (2015).
[Crossref]

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bull. 60(16), 1403–1415 (2015).
[Crossref]

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “On-axis shaping of second-harmonic beams,” Laser Photonics Rev. 9(6), L40–L44 (2015).
[Crossref]

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[Crossref] [PubMed]

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangled photons,” Opt. Express 21(6), 6689–6696 (2013).
[Crossref] [PubMed]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

I. Dolev, A. Libster, and A. Arie, “Self-accelerating parabolic beams in quadratic nonlinear media,” Appl. Phys. Lett. 101, 101109 (2012).
[Crossref]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett. 36(15), 3015–3017 (2011).
[Crossref] [PubMed]

I. Dolev and A. Arie, “Three wave mixing of airy beams in a quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 97, 171102 (2010).
[Crossref]

I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010).
[Crossref] [PubMed]

I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
[Crossref]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
[Crossref]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
[Crossref] [PubMed]

Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, “Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion,” Appl. Phys. Lett. 88, 011103 (2006).

Bai, Y. F.

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspeading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Bandres, M. A.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett. 33(15), 1678–1680 (2008).
[Crossref] [PubMed]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Becouarn, L.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry, “Stable and unstable Airy-related caustics and beams,” J. Opt. 19(5), 055601 (2017).
[Crossref]

M. V. Berry and N. L. Balazs, “Nonspeading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Bloch, N. V.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

Boes, A.

Bouwmeester, A. Z. D.

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Brown, B. R.

Browne, D. E.

C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
[Crossref] [PubMed]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Buono, W. T.

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

Burch, J. J.

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55(4), 599–601 (1967).
[Crossref]

Burnett, I.

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

Canalias, C.

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4,” Appl. Phys. Lett. 103(25), 252905 (2013).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

Carrasco, S.

Castro, I.

Chen, X.

Chen, Z.

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Cheng, J.

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

Christodoulides, D. N.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett. 106(21), 213903 (2011).
[Crossref] [PubMed]

D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cižmár, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Coll-Lladó, C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Courvoisier, F.

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Dalgarno, H. I. C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Dholakia, K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Dolev, I.

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

I. Dolev, A. Libster, and A. Arie, “Self-accelerating parabolic beams in quadratic nonlinear media,” Appl. Phys. Lett. 101, 101109 (2012).
[Crossref]

I. Dolev and A. Arie, “Three wave mixing of airy beams in a quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 97, 171102 (2010).
[Crossref]

I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010).
[Crossref] [PubMed]

I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
[Crossref]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dudley, J. M.

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Eibl, M.

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Eisenberg, H. S.

Ellenbogen, T.

I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010).
[Crossref] [PubMed]

I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
[Crossref]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

Epstein, I.

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[Crossref] [PubMed]

Eyres, L. A.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
[Crossref] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

G. Imeshev, M. Proctor, and M. M. Fejer, “Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings,” Opt. Lett. 23(9), 673–675 (1998).
[Crossref] [PubMed]

Ferrier, D. E. K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Fink, H.-W.

T. Latychevskaia and H.-W. Fink, “Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams,” Sci. Rep. 6(1), 26312 (2016).
[Crossref] [PubMed]

Fokine, M.

Fradkin-Kashi, K.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
[Crossref] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
[Crossref]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005).
[Crossref]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Froehly, L.

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Furfaro, L.

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Furukawa, Y.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
[Crossref] [PubMed]

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

Gabor, D.

D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Gallmann, L.

Ganany-Padowicz, A.

E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangled photons,” Opt. Express 21(6), 6689–6696 (2013).
[Crossref] [PubMed]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

Gerard, B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Giust, R.

Glickman, Y.

Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, “Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion,” Appl. Phys. Lett. 88, 011103 (2006).

Gong, Y. X.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Greenfield, E.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Grier, D. G.

Gunn-Moore, F. J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Gvishi, R.

Habshoosh, N.

Halevy, A.

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Harris, J. S.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Hatano, H.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Hong, X.-H.

Houe, M.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D Appl. Phys. 28(9), 1747–1763 (1995).
[Crossref]

Hu, X.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Hu, Y.

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huguenin, J. A. O.

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

Hum, D. S.

Hurvitz, G.

Imeshev, G.

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

Ishizuki, H.

Ito, K.

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005).
[Crossref]

Jacquot, M.

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

Jin, H.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Juwiler, I.

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second-harmonic beams with switchable curved trajectories,” Optica 4(1), 153 (2017).
[Crossref]

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “Generation of second harmonic beams with switchable curved trajectories,” Optica 4, 153—156 (2016).

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “On-axis shaping of second-harmonic beams,” Laser Photonics Rev. 9(6), L40–L44 (2015).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett. 36(15), 3015–3017 (2011).
[Crossref] [PubMed]

Kaminer, I.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett. 106(21), 213903 (2011).
[Crossref] [PubMed]

Karpinski, P.

Katz, M.

Keller, U.

Khoury, A. Z.

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
[Crossref] [PubMed]

Klyshko, D. N.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

Kong, L.-J.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Krolikowski, W.

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Lacourt, P. A.

Lallier, E.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Latychevskaia, T.

T. Latychevskaia and H.-W. Fink, “Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams,” Sci. Rep. 6(1), 26312 (2016).
[Crossref] [PubMed]

Laurell, F.

Lee, W. H.

Leng, H. Y.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Leshem, A.

Li, J.

Li, S.-M.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Li, Y.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Libster, A.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

I. Dolev, A. Libster, and A. Arie, “Self-accelerating parabolic beams in quadratic nonlinear media,” Appl. Phys. Lett. 101, 101109 (2012).
[Crossref]

Libster-Hershko, A.

Lightman, S.

Lilach, Y.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

Liu, D.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Liu, H.

Lohmann, A. W.

Lu, C.-Y.

C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
[Crossref] [PubMed]

Lu, J.

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

Lu, L. L.

Lu, R.-E.

Lu, Y.

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

Luo, X. W.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Makio, S.

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

Mathis, A.

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

Mattle, K.

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Mayer, B. W.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Megidish, E.

Meshulam, G.

Miller, G. D.

Mills, M.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

Ming, Y.

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

Mitchell, A.

Monken, C. H.

C. H. Monken, P. H. S. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998).
[Crossref]

Moraes, L. F. C.

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Naor, L.

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bull. 60(16), 1403–1415 (2015).
[Crossref]

Nitanda, F.

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

Niwa, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
[Crossref] [PubMed]

Nylk, J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Padgett, M. J.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
[Crossref]

Pádua, S.

C. H. Monken, P. H. S. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998).
[Crossref]

Pan, J. W.

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Pan, J.-W.

C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
[Crossref] [PubMed]

Parameswaran, K. R.

Pasiskevicius, V.

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4,” Appl. Phys. Lett. 103(25), 252905 (2013).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

Phillips, C. R.

Piestun, R.

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002).
[Crossref]

Pinguet, T. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005).
[Crossref]

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

Porat, G.

Proctor, M.

Qin, Y.-Q.

Qiu, X.

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

Raz, O.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Remez, R.

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ren, Z.-C.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Ribeiro, P. H. S.

C. H. Monken, P. H. S. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998).
[Crossref]

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Rodrigo, J. A.

Rodríguez-Lara, B. M.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

Rosenman, G.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
[Crossref]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
[Crossref] [PubMed]

Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, “Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion,” Appl. Phys. Lett. 88, 011103 (2006).

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Route, R. K.

Rubin, M. H.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Sato, M.

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

Segev, M.

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett. 106(21), 213903 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Sergienko, A. V.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shamir, J.

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002).
[Crossref]

Shanblatt, E. R.

Shapira, A.

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bull. 60(16), 1403–1415 (2015).
[Crossref]

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett. 36(15), 3015–3017 (2011).
[Crossref] [PubMed]

Shemer, K.

Sheng, Y.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shih, Y. H.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

Shiloh, R.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

Shvedov, V.

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
[Crossref]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Souza, C. E. R.

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Strekalov, D. V.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

Strömqvist, G.

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Taira, T.

Takekawa, S.

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

Tang, J.

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Torner, L.

Torres, J. P.

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

Townsend, P. D.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D Appl. Phys. 28(9), 1747–1763 (1995).
[Crossref]

Trajtenberg-Mills, S.

Tu, C.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Urenski, P.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
[Crossref]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
[Crossref] [PubMed]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Vettenburg, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Voloch-Bloch, N.

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
[Crossref]

Walasik, W.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

Wang, H.-T.

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Wei, D.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Wen, J.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Winebrand, E.

Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, “Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion,” Appl. Phys. Lett. 88, 011103 (2006).

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Xiao, M.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Xie, Z. D.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Xu, F.

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

Xu, P.

L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, “Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals,” Opt. Express 23(2), 1203–1212 (2015).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, B.

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, T.

C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
[Crossref] [PubMed]

Yu, W. J.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Yu, X. Q.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yue, Y.-Y.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Zhang, C.

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[Crossref] [PubMed]

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[Crossref] [PubMed]

X.-H. Hong, B. Yang, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “Nonlinear Volume Holography for Wave-Front Engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Zhang, L.

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

Zhang, Y.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

Zhao, G.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Zhao, S.

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

Zhao, X.

Zheng, Y.

Zhong, M. L.

L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, “Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals,” Opt. Express 23(2), 1203–1212 (2015).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Zhu, S. N.

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, “Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals,” Opt. Express 23(2), 1203–1212 (2015).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Zhu, Y.-Y.

Zukauskas, A.

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4,” Appl. Phys. Lett. 103(25), 252905 (2013).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319 (2011).
[Crossref]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspeading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Characterization of optical and nonlinear properties of periodically-poled RbTiOAsO4 in the mid-infrared range via difference-frequency generation,” Appl. Phys. B 71(2), 251–255 (2000).
[Crossref]

Appl. Phys. Lett. (7)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4,” Appl. Phys. Lett. 103(25), 252905 (2013).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001).
[Crossref]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[Crossref]

I. Dolev and A. Arie, “Three wave mixing of airy beams in a quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 97, 171102 (2010).
[Crossref]

I. Dolev, A. Libster, and A. Arie, “Self-accelerating parabolic beams in quadratic nonlinear media,” Appl. Phys. Lett. 101, 101109 (2012).
[Crossref]

I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, “Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals,” Appl. Phys. Lett. 95, 201112 (2009).
[Crossref]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ming, J. Tang, Z. Chen, F. Xu, L. Zhang, and Y. Lu, “Generation of N00N State With Orbital Angular Momentum in a Twisted Nonlinear Photonic Crystal,” IEEE J. Sel. Top. Quantum Electron. 21(3), 225–230 (2015).
[Crossref]

J. Cryst. Growth (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

J. Eur. Opt. Soc. (1)

A. Mathis, L. Froehly, L. Furfaro, M. Jacquot, J. M. Dudley, and F. Courvoisier, “Direct machining of curved trenches in silicon with femtosecond accelerating beams,” J. Eur. Opt. Soc. 8, 13019 (2013).
[Crossref]

J. Opt. (1)

M. V. Berry, “Stable and unstable Airy-related caustics and beams,” J. Opt. 19(5), 055601 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D Appl. Phys. 28(9), 1747–1763 (1995).
[Crossref]

Jpn. J. Appl. Phys. (1)

F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals,” Jpn. J. Appl. Phys. 34(1), 1546–1549 (1995).
[Crossref]

Laser Photonics Rev. (3)

S. Trajtenberg-Mills, I. Juwiler, and A. Arie, “On-axis shaping of second-harmonic beams,” Laser Photonics Rev. 9(6), L40–L44 (2015).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

A. Shapira, I. Juwiler, and A. Arie, “Tunable nonlinear beam shaping by non-collinear interactions,” Laser Photonics Rev. 7(4), L25–L29 (2013).
[Crossref]

Nat. Commun. (1)

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Nat. Photonics (5)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Nature (3)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

A. Z. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

New J. Phys. (1)

W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, C. E. R. Souza, and A. Z. Khoury, “Arbitrary orbital angular momentum addition in second harmonic generation,” New J. Phys. 16(9), 093041 (2014).
[Crossref]

Opt. Commun. (2)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005).
[Crossref]

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
[Crossref]

Opt. Express (8)

E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19(7), 5833–5838 (2011).
[Crossref] [PubMed]

L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express 19(17), 16455–16465 (2011).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangled photons,” Opt. Express 21(6), 6689–6696 (2013).
[Crossref] [PubMed]

J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21(18), 20544–20555 (2013).
[Crossref] [PubMed]

L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, “Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals,” Opt. Express 23(2), 1203–1212 (2015).
[Crossref] [PubMed]

H. Liu, J. Li, X. Zhao, Y. Zheng, and X. Chen, “Nonlinear Raman-Nath second harmonic generation with structured fundamental wave,” Opt. Express 24(14), 15666–15671 (2016).
[Crossref] [PubMed]

C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, “Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media,” Opt. Express 24(14), 15940–15953 (2016).
[Crossref] [PubMed]

Opt. Lett. (16)

A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, “Dynamic control of light beams in second harmonic generation,” Opt. Lett. 40(9), 1944–1947 (2015).
[Crossref] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25(10), 743–745 (2000).
[Crossref] [PubMed]

A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Two-dimensional nonlinear beam shaping,” Opt. Lett. 37(11), 2136–2138 (2012).
[Crossref] [PubMed]

S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
[Crossref] [PubMed]

A. Leshem, G. Meshulam, G. Porat, and A. Arie, “Adiabatic second-harmonic generation,” Opt. Lett. 41(6), 1229–1232 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[Crossref] [PubMed]

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[Crossref] [PubMed]

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[Crossref] [PubMed]

A. Shapira, I. Juwiler, and A. Arie, “Nonlinear computer-generated holograms,” Opt. Lett. 36(15), 3015–3017 (2011).
[Crossref] [PubMed]

G. Imeshev, M. Proctor, and M. M. Fejer, “Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings,” Opt. Lett. 23(9), 673–675 (1998).
[Crossref] [PubMed]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
[Crossref] [PubMed]

J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, “Quasi-phase-matching engineering for spatial control of entangled two-photon states,” Opt. Lett. 29(4), 376–378 (2004).
[Crossref] [PubMed]

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett. 29(15), 1775–1777 (2004).
[Crossref] [PubMed]

M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett. 33(15), 1678–1680 (2008).
[Crossref] [PubMed]

I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Opt. Photonics News (1)

M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, “Accelerating optical beams,” Opt. Photonics News 24(6), 30 (2013).
[Crossref]

Optica (3)

Phys. Rev. A (6)

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996).
[Crossref] [PubMed]

C. H. Monken, P. H. S. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742 (2009).
[Crossref]

S.-M. Li, L.-J. Kong, Z.-C. Ren, Y. Li, C. Tu, and H.-T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 05801 (2013).
[Crossref]

Phys. Rev. Lett. (15)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett. 106(21), 213903 (2011).
[Crossref] [PubMed]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett. 108(11), 113903 (2012).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett. 81(23), 5039–5043 (1998).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[Crossref] [PubMed]

X.-H. Hong, B. Yang, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “Nonlinear Volume Holography for Wave-Front Engineering,” Phys. Rev. Lett. 113(16), 163902 (2014).
[Crossref] [PubMed]

C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits,” Phys. Rev. Lett. 99(25), 250504 (2007).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011).
[Crossref] [PubMed]

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[Crossref] [PubMed]

Proc. IEEE (2)

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55(4), 599–601 (1967).
[Crossref]

R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002).
[Crossref]

Sci. Bull. (1)

A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci. Bull. 60(16), 1403–1415 (2015).
[Crossref]

Sci. Rep. (3)

D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, “Diffraction interference induced superfocusing in nonlinear Talbot effect,” Sci. Rep. 4(1), 6134 (2015).
[Crossref] [PubMed]

S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, “Delivering Sound Energy along an Arbitrary Convex Trajectory,” Sci. Rep. 4(1), 6628 (2015).
[Crossref] [PubMed]

T. Latychevskaia and H.-W. Fink, “Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams,” Sci. Rep. 6(1), 26312 (2016).
[Crossref] [PubMed]

Other (6)

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, Single-Photon Generation and Detection - Physics and Applications, Experimental Methods in the Physical Sciences (Elsevier, 2013), Vol. 45.

Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, “Electron-beam-induced domain poling in LiNbO 3 for two-dimensional nonlinear frequency conversion,” Appl. Phys. Lett. 88, 011103 (2006).

B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “Nonlinear Image Formation by Optical Superlattices,” https://arxiv.org/abs/1511.07121 (2015).

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” in Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO ’02. Technical Diges (Opt. Soc. America, 2002), pp. 377–378.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of different spatial beam shaping methods: (a) by changing the properties of the fundamental pump beam before it enters the crystal (b) by imprinting a binary mask onto the crystal itself, and (c) by adding a mask to the exit facet of the crystal.
Fig. 2
Fig. 2 Fabrication of poled crystals through electric field poling. (a) a photoresist is applied on top of the nonlinear ferroelectric crystal. (b) The crystal is exposed to UV under a photolithographic mask. (c) The exposed parts of the photoresist are removed, (d) The top and bottom surfaces of the crystal are coated with electrodes. (e) a high voltage pulse is applied, causing domain inversion where the top electrode is in contact with the crystal. (f) the electrods and photoresist are removed via etching, exposing the inversed domains. (g) the crystal edges are polished.
Fig. 3
Fig. 3 Poling examples on 0.5-mm thick stoichiometric lithium tantalate doped with 0.5% MgO SLT after selective etching the reveals the poled structure. (a) Features having size of less than 2 µm for a custom shape of straight lines. (b) Curved domains, not normal to the crystalline x-axis, with high resolution poling, illustrating of the difficulties of poling areas with high curvature: while the relatively straight areas are successfully poled, the areas of high curvature and higher resolution did not achieve the required pattern.
Fig. 4
Fig. 4 Schematic diagram of nonlinear beam shaping schemes using holography. (a) One dimensional shaping, where image appears on axis in the near field. (b) One dimensional shaping, where image appears off axis in the far field. (c)) Two dimensional shaping, where image appears on axis in the far field and (d) Two dimensional shaping, where image appears off axis in the far field.
Fig. 5
Fig. 5 A nonlinear photonic switch [57]. The trajectory is changed through change of temperature by fabricating a crystal with two different regions with different poling periods. (a) a microscopic image of fabricated crystal (top), showing the two different periodic domains with different poling periods. The bottom shows the designed pattern. (b1) simulation and (b2) experimental results for 50°C (top) and 150°C (bottom). The dotted line shows the planned cubic trajectory.
Fig. 6
Fig. 6 OAM conservation using a shaped pump beam [17]. (a) Experimental setup. A pump beam is shaped through a linear phase mask into a vortex beam carrying OAM. It then illuminates a fork-shaped nonlinear photonic crystal carrying its own quasi orbital angular momentum. The second harmonic generated beam is also a vortex beam, conserving OAM in the different diffraction orders. (b) 3D microscope image of the fabricated linear phase mask.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T A ω +2i k 1 A ω x = 2 χ (2) ω 1 2 c 2 A 2ω A ω * e iΔkz T A 2ω +2i k 2 A 2ω x = χ (2) ω 2 2 c 2 A ω 2 e iΔkz
χ (2) (x)=| χ (2) | m= G m exp(i k m x)
I(x,y)=| E R + E D | 2 =| E R | 2 +| A D | 2 +2 E R A D cosϕ
t(z,y)={ 1, 0, cos( (2π f carrier y)+ϕ(z,y) )cos( πq(z,y) )0 else
dφ(y) dy = kc'(x) 1+ (c'(x)) 2
χ (2) (x,y)= χ (2) sign{cos[2π f QPM x+ϕ(y)]cos(πq(y))}
Ai( y y 0 ,x=0 )=FT[ Aexp( i y 0 3 K 3 3 ) ]
χ (2) (x,y)= χ (2) sign{cos[2π f QPM x+ f c y 3 ])}
l 2ω = l 2ω + l ω + l c

Metrics