Abstract

We report direct bonding of 5mmø × 500μm thick polycrystalline CVD-grown diamond to 25mmø × 4mm ZnSe via a plasma-assisted technique. In addition, diamond to C-cut sapphire bonding is demonstrated via the same approach. Durability of the diamond/ZnSe bond is tested over a temperature range −40 to 150°C and under various ramp rates, demonstrating strong adhesion over the majority of the bond up to a temperature of 80°C. Optical transmission at a wavelength of 1μm shows near ideal transmission when compared to bare ZnSe. Heatspreading performance of the bonded composite is investigated using a pump-probe arrangement, demonstrating at least two-orders of magnitude reduction in the thermal-lens power compared to ZnSe alone.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide

Sean A. McDaniel, Adam Lancaster, Jonathan W. Evans, Ajoy K. Kar, and Gary Cook
Opt. Express 24(4) 3502-3512 (2016)

Eye safety implications of high harmonic generation in zinc selenide

Christopher. B. Marble, Sean. P. O’Connor, Dawson. T. Nodurft, Andrew. W. Wharmby, and Vladislav V. Yakovlev
Opt. Express 27(3) 2828-2836 (2019)

Direct bonding and beyond

Jan Haisma, Nico Hattu, J. T. C. M. (Dook) Pulles, Esther Steding, and Jan C. G. Vervest
Appl. Opt. 46(27) 6793-6803 (2007)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-State Raman Gain in Diamond as a Function of Pump Wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
    [Crossref]
  2. R. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 218–223 (2013).
  3. E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
    [Crossref]
  4. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
    [Crossref]
  5. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486nm,” Opt. Lett. 38(13), 2194–2196 (2013).
    [Crossref] [PubMed]
  6. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
    [Crossref] [PubMed]
  7. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer–Verlag, 2001).
    [Crossref]
  8. D. T. F. Marple, “Refractive Index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys.,  35(3), 539–542 (1964).
    [Crossref]
  9. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Topics Quantum Electron.,  13(3), 626–637 (2007).
    [Crossref]
  10. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
    [Crossref]
  11. I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
    [Crossref]
  12. J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
    [Crossref]
  13. H. Lee, H. E. Meissner, and O. R. Meissner, “Adhesive-free-bond (AFB) CVD diamond/sapphire and CVD diamond/YAG crystal composites,” Proc. SPIE 6216, 62160(2006).
  14. C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).
  15. D. J. Pickrell, K. A. Kline, and R. E. Taylor, “Thermal expansion of polycrystalline diamond produced by chemical vapor deposition,” Appl. Phys. Lett. 64(18), 2353–2355 (1994).
    [Crossref]
  16. C. H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
    [Crossref]

2017 (1)

J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
[Crossref]

2016 (1)

2013 (3)

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-State Raman Gain in Diamond as a Function of Pump Wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

R. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 218–223 (2013).

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

2012 (1)

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

2009 (1)

C. H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

2007 (1)

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Topics Quantum Electron.,  13(3), 626–637 (2007).
[Crossref]

2006 (1)

H. Lee, H. E. Meissner, and O. R. Meissner, “Adhesive-free-bond (AFB) CVD diamond/sapphire and CVD diamond/YAG crystal composites,” Proc. SPIE 6216, 62160(2006).

2005 (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

2004 (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

1996 (1)

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

1994 (1)

D. J. Pickrell, K. A. Kline, and R. E. Taylor, “Thermal expansion of polycrystalline diamond produced by chemical vapor deposition,” Appl. Phys. Lett. 64(18), 2353–2355 (1994).
[Crossref]

1964 (1)

D. T. F. Marple, “Refractive Index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys.,  35(3), 539–542 (1964).
[Crossref]

Ariga, Y.

I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
[Crossref]

Beecher, S. J.

Berry, P. A.

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Brown, G.

Eberhardt, R.

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

Feth, S.

C. H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Gapontsev, V.

Ichikawa, H.

I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
[Crossref]

Kalkowski, G.

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

Kar, A. K.

Kasu, M.

J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
[Crossref]

Kemp, A. J.

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-State Raman Gain in Diamond as a Function of Pump Wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

Kline, K. A.

D. J. Pickrell, K. A. Kline, and R. E. Taylor, “Thermal expansion of polycrystalline diamond produced by chemical vapor deposition,” Appl. Phys. Lett. 64(18), 2353–2355 (1994).
[Crossref]

Koidl, P.

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

Lee, H.

H. Lee, H. E. Meissner, and O. R. Meissner, “Adhesive-free-bond (AFB) CVD diamond/sapphire and CVD diamond/YAG crystal composites,” Proc. SPIE 6216, 62160(2006).

Lehoczky, S. L.

C. H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Liang, J.

J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
[Crossref]

Locher, R.

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

Macdonald, J. R.

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Topics Quantum Electron.,  13(3), 626–637 (2007).
[Crossref]

Marple, D. T. F.

D. T. F. Marple, “Refractive Index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys.,  35(3), 539–542 (1964).
[Crossref]

Masuya, S.

J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
[Crossref]

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Meissner, H. E.

H. Lee, H. E. Meissner, and O. R. Meissner, “Adhesive-free-bond (AFB) CVD diamond/sapphire and CVD diamond/YAG crystal composites,” Proc. SPIE 6216, 62160(2006).

Meissner, O. R.

H. Lee, H. E. Meissner, and O. R. Meissner, “Adhesive-free-bond (AFB) CVD diamond/sapphire and CVD diamond/YAG crystal composites,” Proc. SPIE 6216, 62160(2006).

Mildren, R.

R. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 218–223 (2013).

Mirov, M.

Mirov, S.

Moskalev, I.

Muller-Sebert, W.

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

Okuyama, Y.

I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
[Crossref]

Onda, T.

I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
[Crossref]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Pickrell, D. J.

D. J. Pickrell, K. A. Kline, and R. E. Taylor, “Thermal expansion of polycrystalline diamond produced by chemical vapor deposition,” Appl. Phys. Lett. 64(18), 2353–2355 (1994).
[Crossref]

Reilly, S.

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-State Raman Gain in Diamond as a Function of Pump Wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

Rekas, M.

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

Rothhardt, C.

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

Sabella, A.

R. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 218–223 (2013).

Savitski, V. G.

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-State Raman Gain in Diamond as a Function of Pump Wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

Schepler, K. L.

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Shigekawa, N.

J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
[Crossref]

Shoji, I.

I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
[Crossref]

Smolski, V.

Sorokina, I. T.

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

Su, C. H.

C. H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Taylor, R. E.

D. J. Pickrell, K. A. Kline, and R. E. Taylor, “Thermal expansion of polycrystalline diamond produced by chemical vapor deposition,” Appl. Phys. Lett. 64(18), 2353–2355 (1994).
[Crossref]

Tunnermann, A.

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

Vasilyev, S.

Wild, C.

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

Worner, E.

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

Zaitsev, A. M.

A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer–Verlag, 2001).
[Crossref]

Zakrevskiy, A.

Appl. Phys. Lett. (2)

J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, “Realization of direct bonding of single crystal diamond and Si substrates,” Appl. Phys. Lett. 110(11), 111603 (2017)
[Crossref]

D. J. Pickrell, K. A. Kline, and R. E. Taylor, “Thermal expansion of polycrystalline diamond produced by chemical vapor deposition,” Appl. Phys. Lett. 64(18), 2353–2355 (1994).
[Crossref]

Diamond Relat. Mater. (1)

E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements,” Diamond Relat. Mater. 5(6), 688–692 (1996).
[Crossref]

Fiber Lasers IX: Technology, Systems, and Applications (1)

C. Rothhardt, M. Rekas, G. Kalkowski, R. Eberhardt, and A. Tunnermann, “New approach to fabrication of a Faraday isolator for high power laser applications,” Fiber Lasers IX: Technology, Systems, and Applications 8237, 83270 (2012).

IEEE J. Quantum Electron. (1)

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-State Raman Gain in Diamond as a Function of Pump Wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (2)

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Topics Quantum Electron.,  13(3), 626–637 (2007).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Topics Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

J. Appl. Phys. (1)

D. T. F. Marple, “Refractive Index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys.,  35(3), 539–542 (1964).
[Crossref]

Mater. Lett. (1)

C. H. Su, S. Feth, and S. L. Lehoczky, “Thermal expansion coefficient of ZnSe crystal between 17 and 1080°C by interferometry,” Mater. Lett. 63(17), 1475–1477 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004).
[Crossref]

Proc. SPIE (1)

H. Lee, H. E. Meissner, and O. R. Meissner, “Adhesive-free-bond (AFB) CVD diamond/sapphire and CVD diamond/YAG crystal composites,” Proc. SPIE 6216, 62160(2006).

Other (2)

I. Shoji, Y. Okuyama, H. Ichikawa, Y. Ariga, and T. Onda, “Laser Characteristics of Nd:YAG/diamond and Nd:YVO4/diamond Composite Devices Fabricated with the Room-temperature-bonding Technique,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015) paper ATh2A.14.
[Crossref]

A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer–Verlag, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Surface maps for diamond, ZnSe and sapphire, where Sq is the RMS roughness at 100× magnification.
Fig. 2
Fig. 2 Water droplets placed on plasma-treated and untreated ZnSe. The activated surface becomes strongly hydrophilic.
Fig. 3
Fig. 3 500μm thick diamond bonded to 4mm thick ZnSe and 660μm thick sapphire wafers.
Fig. 4
Fig. 4 (a) The diamond/ZnSe composite at 80°C, (b) a 10× microscope inspection of the failed bond region and (c) A 3D surface map of the ZnSe surface following debonding.
Fig. 5
Fig. 5 Microscope inspection of the bond at 5× magnification following cooling to −40°C. Shrinking of the bonded region is noted along the edges.
Fig. 6
Fig. 6 (a) HeNe interferometer setup for inspecting bond interface optical distortions. One path travels through the bond before recombining with the freespace beam reflected off an Optical Flat (OF). (b) Interference patterns with both beams in free space travel and with one beam passing through the bonded composite.
Fig. 7
Fig. 7 (a) Pump-probe setup design to compare thermal lensing in bonded and unbonded ZnSe and (b) optical power of induced thermal lens with increasing laser power.

Tables (1)

Tables Icon

Table 1 Measured and theoretical transmissions at 1.064μm for bare ZnSe, the diamond/ZnSe composite and a region of failed bond.

Metrics