Abstract

We report on a passively Q-switched Nd:YVO4 laser at 1064.34 nm by using the ferroferric-oxide (Fe3O4) nanoparticles (FONPs) saturable absorber (SA). It is corroborated that the FONPs SA exhibits a large nonlinear saturable absorption property with the modulation depth of 2.49% at the laser wavelength of 1 µm. By inserting the novel SA into a V-type Nd:YVO4 laser cavity, we obtain the shortest pulse duration of 53 ns with a repetition rate of 576.4 kHz. The corresponding average output power, single pulse energy, and peak power are 104 mW, 0.18 µJ, and 3.53 W, respectively. To the best of our knowledge, it is the first time to experimentally confirm the application of FONPs in a pulsed Nd:YVO4 solid state laser. The parameters of the pulse width, average output power, and peak power are superior to those in the reported pulsed fiber lasers with FONPs SA so far.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

20 July 2017: A minor correction was made to Fig. 2.


OSA Recommended Articles
Passively Q-switched 1.34-µm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller
Opt. Lett. 22(13) 991-993 (1997)

Novel molybdenum disulfide Langmuir Blodgett thin film as a saturable absorber for a passively Q-switched Nd:GdVO4 laser

Qiqi Zheng, Jiang Wang, Yonggang Wang, and Zhendong Chen
Opt. Mater. Express 8(10) 3176-3183 (2018)

Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber

Bin Xu, Yongjie Cheng, Yi Wang, Yizhong Huang, Jian Peng, Zhengqian Luo, Huiying Xu, Zhiping Cai, Jian Weng, and Richard Moncorgé
Opt. Express 22(23) 28934-28940 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239(4841), 742–747 (1988).
    [Crossref] [PubMed]
  2. D. W. Hughes and J. R. M. Barr, “Laser diode pumped solid state lasers,” J. Phys. D Appl. Phys. 25(4), 563–586 (1992).
    [Crossref]
  3. T. Juhasz, S. T. Lai, and M. A. Pessot, “Efficient short-pulse generation from a diode-pumped Nd:YLF laser with a piezoelectrically induced diffraction modulator,” Opt. Lett. 15(24), 1458–1460 (1990).
    [Crossref] [PubMed]
  4. G. T. Maker and A. I. Ferguson, “Mode locking and Q switching of a diode laser pumped neodymium-doped yttrium lithium fluoride laser,” Appl. Phys. Lett. 54(5), 403–405 (1989).
    [Crossref]
  5. W. M. Grossman, M. Gifford, and R. W. Wallace, “Short-pulse Q-switched 1.3- and 1-mum diode-pumped lasers,” Opt. Lett. 15(11), 622–624 (1990).
    [Crossref] [PubMed]
  6. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
    [Crossref] [PubMed]
  7. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
    [Crossref] [PubMed]
  8. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  9. D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
    [Crossref] [PubMed]
  10. Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE Journal of Quan. Elec. 31(4), 657–663 (1995).
    [Crossref]
  11. H. Yu, V. Petrov, U. Griebner, D. Parisi, S. Veronesi, and M. Tonelli, “Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy,” Opt. Lett. 37(13), 2544–2546 (2012).
    [Crossref] [PubMed]
  12. A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
    [Crossref]
  13. K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
    [Crossref]
  14. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  15. Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
    [Crossref] [PubMed]
  16. X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express 19(10), 9950–9955 (2011).
    [Crossref] [PubMed]
  17. H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
    [Crossref]
  18. Q. Wang, H. Teng, Y. Zou, Z. Zhang, D. Li, R. Wang, C. Gao, J. Lin, L. Guo, and Z. Wei, “Graphene on SiC as a Q-switcher for a 2 μm laser,” Opt. Lett. 37(3), 395–397 (2012).
    [Crossref] [PubMed]
  19. Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
    [Crossref]
  20. Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
    [Crossref]
  21. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
    [Crossref]
  22. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref] [PubMed]
  23. B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).
  24. A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
    [Crossref]
  25. H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
    [Crossref]
  26. K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
    [Crossref] [PubMed]
  27. R. Khazaeizhad, S. H. Kassani, H. Jeong, D. I. Yeom, and K. Oh, “Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes,” Opt. Express 22(19), 23732–23742 (2014).
    [Crossref] [PubMed]
  28. B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
    [Crossref] [PubMed]
  29. C. Feng, X. Y. Zhang, J. Wang, Z. J. Liu, Z. H. Cong, H. Rao, Q. P. Wang, and J. X. Fang, “Passively mode-locked Nd3+:YVO4 laser using a molybdenum disulfide as saturable absorber,” Opt. Mater. Express 6(4), 1358–1366 (2016).
    [Crossref]
  30. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. Li, H. Yang, J. Hu, and G. Cao, “Microfiber based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
    [Crossref]
  31. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
    [Crossref] [PubMed]
  32. L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
    [Crossref]
  33. K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
    [Crossref] [PubMed]
  34. X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
    [Crossref]
  35. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
    [Crossref] [PubMed]
  36. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  37. B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
    [Crossref] [PubMed]
  38. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
    [Crossref] [PubMed]
  39. L. Blaney, “Magnetite (Fe3O4): Properties, Synthesis, and Applications,” Lehigh Review at Lehigh Preserve 15 (2007).
  40. M. Morel, F. Martínez, and E. Mosquera, “Synthesis and characterization of magnetite nanoparticles from mineral magnetite,” J. Magn. Magn. Mater. 343(5), 76–81 (2013).
    [Crossref]
  41. J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
    [Crossref]
  42. A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
    [Crossref] [PubMed]
  43. A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
    [Crossref]
  44. M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
    [Crossref] [PubMed]
  45. S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci. 468, 334–346 (2016).
    [Crossref] [PubMed]
  46. A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C Solid State Phys. 12(6), 1157–1164 (1979).
    [Crossref]
  47. X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39(1), 189–192 (1981).
    [Crossref]
  48. O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
    [Crossref]
  49. X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
    [Crossref]
  50. D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5(1), 1–5 (2017).
    [Crossref]
  51. Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
    [Crossref]

2017 (2)

D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5(1), 1–5 (2017).
[Crossref]

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

2016 (5)

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci. 468, 334–346 (2016).
[Crossref] [PubMed]

C. Feng, X. Y. Zhang, J. Wang, Z. J. Liu, Z. H. Cong, H. Rao, Q. P. Wang, and J. X. Fang, “Passively mode-locked Nd3+:YVO4 laser using a molybdenum disulfide as saturable absorber,” Opt. Mater. Express 6(4), 1358–1366 (2016).
[Crossref]

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

2015 (8)

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. Li, H. Yang, J. Hu, and G. Cao, “Microfiber based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

2014 (6)

Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
[Crossref] [PubMed]

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

R. Khazaeizhad, S. H. Kassani, H. Jeong, D. I. Yeom, and K. Oh, “Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes,” Opt. Express 22(19), 23732–23742 (2014).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

2013 (4)

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

M. Morel, F. Martínez, and E. Mosquera, “Synthesis and characterization of magnetite nanoparticles from mineral magnetite,” J. Magn. Magn. Mater. 343(5), 76–81 (2013).
[Crossref]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express 19(10), 9950–9955 (2011).
[Crossref] [PubMed]

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

2010 (2)

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

2009 (1)

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

2007 (1)

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

2004 (1)

2003 (1)

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

2002 (1)

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

2001 (2)

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

1999 (1)

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

1995 (1)

Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE Journal of Quan. Elec. 31(4), 657–663 (1995).
[Crossref]

1994 (1)

1992 (2)

1990 (2)

1989 (1)

G. T. Maker and A. I. Ferguson, “Mode locking and Q switching of a diode laser pumped neodymium-doped yttrium lithium fluoride laser,” Appl. Phys. Lett. 54(5), 403–405 (1989).
[Crossref]

1988 (1)

R. L. Byer and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

1981 (1)

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39(1), 189–192 (1981).
[Crossref]

1979 (1)

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C Solid State Phys. 12(6), 1157–1164 (1979).
[Crossref]

Abramski, K. M.

Agnesi, A.

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Alvarado, S. F.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C Solid State Phys. 12(6), 1157–1164 (1979).
[Crossref]

Asom, M. T.

Bai, X. K.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Barr, J. R. M.

D. W. Hughes and J. R. M. Barr, “Laser diode pumped solid state lasers,” J. Phys. D Appl. Phys. 25(4), 563–586 (1992).
[Crossref]

Bégin-Colin, S.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Bimbaum, M.

Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE Journal of Quan. Elec. 31(4), 657–663 (1995).
[Crossref]

Blau, W. J.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Boyd, G. D.

Byer, R. L.

R. L. Byer and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

R. L. Byer and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

Cai, W.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Cai, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Cao, G.

Chang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Chen, H.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. Li, H. Yang, J. Hu, and G. Cao, “Microfiber based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5(3), 479–489 (2015).
[Crossref]

Chen, H. R.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Chen, J.

Chen, S.

Chen, Y.

Chen, Y. S.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

Cheng, Y.

Chiu, T. H.

Choi, S. Y.

Chu, M.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Coleman, J. N.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Cong, Z. H.

Cui, X. Q.

Dai, X.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Datta, R.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Demortière, A.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Denisov, I. A.

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Diebold, A.

Dill, C.

Donnio, B.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Du, B. B.

Duan, L. N.

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Emaury, F.

Eyert, V.

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

Fan, D. Y.

Fang, J. X.

Fang, Z.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Felix, R.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Feng, C.

Feng, T. X.

Feng, Y.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Ferguson, A. I.

G. T. Maker and A. I. Ferguson, “Mode locking and Q switching of a diode laser pumped neodymium-doped yttrium lithium fluoride laser,” Appl. Phys. Lett. 54(5), 403–405 (1989).
[Crossref]

Ferguson, J. F.

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Gao, C.

Gifford, M.

Golling, M.

Gomathi, A.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Griebner, U.

Grossman, W. M.

Guandalini, A.

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Guillon, D.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Guo, C.

Guo, L.

Guo, Z. N.

Gwak, J. Y.

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Hao, X. P.

He, J.

He, J. L.

Hsieh, W. F.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Hu, J.

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Huang, M. F.

Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE Journal of Quan. Elec. 31(4), 657–663 (1995).
[Crossref]

Huang, S. J.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Huang, Y.

Hughes, D. W.

D. W. Hughes and J. R. M. Barr, “Laser diode pumped solid state lasers,” J. Phys. D Appl. Phys. 25(4), 563–586 (1992).
[Crossref]

Jabczynski, J. K.

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Jablonski, M.

Jaegermann, W.

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

Jeong, H.

Jiang, B.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Jiang, S. Z.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Jordan, A.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Ju, J. S.

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Juhasz, T.

Kassani, S. H.

Keller, U.

Khazaeizhad, R.

Kim, S.

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Kim, Y. K.

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Klein, A.

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

Ko, S. P.

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Kopczynski, K.

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Kowalczyk, M.

Kuleshov, N. V.

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Kuo, Y. K.

Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE Journal of Quan. Elec. 31(4), 657–663 (1995).
[Crossref]

Lai, S. T.

Late, D. J.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Lazor, P.

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Li, D.

Li, H.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Li, I.

Li, J.

Li, L.

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Li, M. K.

Li, X.

Li, X. L.

Li, Z.

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Lin, J.

Liu, A.

Liu, C. X.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Liu, H. L.

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Liu, J.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
[Crossref] [PubMed]

Liu, Z. J.

Lou, F.

Lu, H.

Lu, S.

Lu, S. B.

Luo, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Macherzynski, W.

Maker, G. T.

G. T. Maker and A. I. Ferguson, “Mode locking and Q switching of a diode laser pumped neodymium-doped yttrium lithium fluoride laser,” Appl. Phys. Lett. 54(5), 403–405 (1989).
[Crossref]

Man, B. Y.

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Manna, A. K.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Mao, D.

D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5(1), 1–5 (2017).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Martínez, F.

M. Morel, F. Martínez, and E. Mosquera, “Synthesis and characterization of magnetite nanoparticles from mineral magnetite,” J. Magn. Magn. Mater. 343(5), 76–81 (2013).
[Crossref]

Mateos, X.

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Meng, J.

Miao, L. L.

Mierczyk, Z.

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Miller, D. A. B.

Mohan, D.

S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci. 468, 334–346 (2016).
[Crossref] [PubMed]

Moncorgé, R.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Morel, M.

M. Morel, F. Martínez, and E. Mosquera, “Synthesis and characterization of magnetite nanoparticles from mineral magnetite,” J. Magn. Magn. Mater. 343(5), 76–81 (2013).
[Crossref]

Mosquera, E.

M. Morel, F. Martínez, and E. Mosquera, “Synthesis and characterization of magnetite nanoparticles from mineral magnetite,” J. Magn. Magn. Mater. 343(5), 76–81 (2013).
[Crossref]

Mou, C. B.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Ning, J.

Niu, H. B.

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

Oh, K.

Paletko, P.

Panissod, P.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Parisi, D.

Pati, S. K.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Peng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Pessot, M. A.

Petrov, V.

Pettenkofer, C.

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

Pichon, B. P.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Pittman, C. U.

S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci. 468, 334–346 (2016).
[Crossref] [PubMed]

Popov, N. N.

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Pourroy, G.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Pu, S. L.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Qi, X.

Qi, X. L.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Rajput, S.

S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci. 468, 334–346 (2016).
[Crossref] [PubMed]

Ramakrishna Matte, H. S. S.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Rao, C. N. R.

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Rao, H.

Reali, G.

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Rotermund, F.

Ruan, S.

Ruan, S. C.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

Saraceno, C. J.

Schiestel, T.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Schirra, H.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Schlegel, A.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C Solid State Phys. 12(6), 1157–1164 (1979).
[Crossref]

Schmidt, H.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Schoenes, J.

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39(1), 189–192 (1981).
[Crossref]

Scholz, R.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Schriber, C.

Set, S. Y.

Shao, Y.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Shebanova, O. N.

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Shi, D.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Si, J. H.

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Sobon, G.

Sotor, J.

Su, L. B.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Su, X.

Südmeyer, T.

Sun, H.

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

Sun, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Tanaka, Y.

Tang, D.

Tang, D. Y.

Teng, H.

Tiefenbacher, S.

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

Tonelli, M.

Tsang, Y. H.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Veronesi, S.

Wachter, P.

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39(1), 189–192 (1981).
[Crossref]

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C Solid State Phys. 12(6), 1157–1164 (1979).
[Crossref]

Wallace, R. W.

Wang, B. L.

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Wang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Wang, J.

Wang, J. Y.

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Wang, J. Z.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

Wang, K.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Wang, Q.

Wang, Q. P.

Wang, R.

Wang, T. Y.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Wang, X.

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Wang, Y.

Wang, Y. G.

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Wang, Y. S.

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

Wang, Z.

Wei, Z.

Wen, Q.

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

Wen, S.

Wen, S. C.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Weng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Wu, D.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Wu, F.

Wu, J. H.

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Wu, K.

Wu, Q.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

Wu, Y. Z.

Wust, P.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

Xia, C.

Xu, B.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Xu, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

Xu, J.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

Xu, J. L.

Xu, L. X.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Xu, S.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Xu, S. C.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Xu, X.

Yaguchi, H.

Yan, P.

Yan, P. G.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

Yang, H.

Yang, K.

Yeom, D. I.

Yin, J. D.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

Yu, H.

Yu, H. H.

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Yumashev, K. V.

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

Zayhowski, J. J.

Zeng, X. L.

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Zhan, J.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Zhang, B.

Zhang, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
[Crossref] [PubMed]

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Zhang, H. J.

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Zhang, L.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Zhang, S. C.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Zhang, W.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhang, W. D.

Zhang, X.

Zhang, X. J.

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

Zhang, X. Y.

Zhang, Y.

Zhang, Z.

Zhao, C.

Zhao, C. J.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Zhao, J.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhao, J. L.

Zhao, L. N.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Zhao, Q.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Zhao, R.

Zheng, L. H.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Zhou, D.

Zhu, C.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Zhu, H. T.

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Zou, Y.

Angew. Chem. (1)

H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. 122(24), 4153–4156 (2010).
[Crossref]

Appl. Phys. Express (1)

X. K. Bai, C. B. Mou, L. X. Xu, S. J. Huang, T. Y. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched Erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9(4), 042701 (2016).
[Crossref]

Appl. Phys. Lett. (1)

G. T. Maker and A. I. Ferguson, “Mode locking and Q switching of a diode laser pumped neodymium-doped yttrium lithium fluoride laser,” Appl. Phys. Lett. 54(5), 403–405 (1989).
[Crossref]

Biomaterials (1)

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, and D. Shi, “Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles,” Biomaterials 34(16), 4078–4088 (2013).
[Crossref] [PubMed]

IEEE Journal of Quan. Elec. (1)

Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE Journal of Quan. Elec. 31(4), 657–663 (1995).
[Crossref]

IEEE Photonics J. (3)

Q. Wen, X. J. Zhang, Y. G. Wang, Y. S. Wang, and H. B. Niu, “Passively Q-Switched Nd:YAG Laser With Graphene Oxide in Heavy Water,” IEEE Photonics J. 6(2), 1–6 (2014).
[Crossref]

B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser,” IEEE Photonics J. 6(3), 1–7 (2014).

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles,” IEEE Photonics J. 9(2), 1501009 (2017).
[Crossref]

J. Alloys Compd. (1)

K. V. Yumashev, I. A. Denisov, N. N. Popov, N. V. Kuleshov, and R. Moncorgé, “Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,” J. Alloys Compd. 341(1-2), 366–370 (2002).
[Crossref]

J. Colloid Interface Sci. (1)

S. Rajput, C. U. Pittman, and D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water,” J. Colloid Interface Sci. 468, 334–346 (2016).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Magn. Magn. Mater. (2)

M. Morel, F. Martínez, and E. Mosquera, “Synthesis and characterization of magnetite nanoparticles from mineral magnetite,” J. Magn. Magn. Mater. 343(5), 76–81 (2013).
[Crossref]

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magn. Magn. Mater. 194(1–3), 185–196 (1999).
[Crossref]

J. Phys. C Solid State Phys. (1)

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C Solid State Phys. 12(6), 1157–1164 (1979).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. W. Hughes and J. R. M. Barr, “Laser diode pumped solid state lasers,” J. Phys. D Appl. Phys. 25(4), 563–586 (1992).
[Crossref]

J. Raman Spectrosc. (1)

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Mater. Lett. (1)

J. H. Wu, S. P. Ko, H. L. Liu, S. Kim, J. S. Ju, and Y. K. Kim, “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties,” Mater. Lett. 61(14–15), 3124–3129 (2007).
[Crossref]

Nanoscale (3)

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref] [PubMed]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Opt. Commun. (3)

A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczynski, K. Kopczynski, and Z. Mierczyk, “Diode pumped Nd:YVO4 laser at 1.34 μm Q-switched and mode locked by a V3+:YAG saturable absorber,” Opt. Commun. 194(4-6), 429–433 (2001).
[Crossref]

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd:GdVO4 laser with graphene oxide/polyvinylalcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

X. Wang, Y. G. Wang, L. N. Duan, L. Li, and H. Sun, “Passively Q-switched nd:YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

Opt. Eng. (1)

H. T. Zhu, L. N. Zhao, J. Liu, S. C. Xu, W. Cai, S. Z. Jiang, L. H. Zheng, L. B. Su, and J. Xu, “Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser,” Opt. Eng. 55(8), 081304 (2015).
[Crossref]

Opt. Express (9)

Y. Zhang, V. Petrov, U. Griebner, X. Zhang, S. Y. Choi, J. Y. Gwak, F. Rotermund, X. Mateos, H. Yu, H. Zhang, and J. Liu, “90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber,” Opt. Express 22(5), 5635–5640 (2014).
[Crossref] [PubMed]

X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express 19(10), 9950–9955 (2011).
[Crossref] [PubMed]

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

R. Khazaeizhad, S. H. Kassani, H. Jeong, D. I. Yeom, and K. Oh, “Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes,” Opt. Express 22(19), 23732–23742 (2014).
[Crossref] [PubMed]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

L. Li, S. Z. Jiang, Y. G. Wang, X. Wang, L. N. Duan, D. Mao, Z. Li, B. Y. Man, and J. H. Si, “WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser,” Opt. Express 23(22), 28934–28940 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

Opt. Lett. (9)

B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

T. Juhasz, S. T. Lai, and M. A. Pessot, “Efficient short-pulse generation from a diode-pumped Nd:YLF laser with a piezoelectrically induced diffraction modulator,” Opt. Lett. 15(24), 1458–1460 (1990).
[Crossref] [PubMed]

W. M. Grossman, M. Gifford, and R. W. Wallace, “Short-pulse Q-switched 1.3- and 1-mum diode-pumped lasers,” Opt. Lett. 15(11), 622–624 (1990).
[Crossref] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[Crossref] [PubMed]

Q. Wang, H. Teng, Y. Zou, Z. Zhang, D. Li, R. Wang, C. Gao, J. Lin, L. Guo, and Z. Wei, “Graphene on SiC as a Q-switcher for a 2 μm laser,” Opt. Lett. 37(3), 395–397 (2012).
[Crossref] [PubMed]

H. Yu, V. Petrov, U. Griebner, D. Parisi, S. Veronesi, and M. Tonelli, “Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy,” Opt. Lett. 37(13), 2544–2546 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Photon. Res. (1)

Phys. Rev. B (1)

A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions,” Phys. Rev. B 64(20), 205416 (2001).
[Crossref]

Sci. Rep. (1)

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Science (1)

R. L. Byer and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

Solid State Commun. (1)

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39(1), 189–192 (1981).
[Crossref]

Other (1)

L. Blaney, “Magnetite (Fe3O4): Properties, Synthesis, and Applications,” Lehigh Review at Lehigh Preserve 15 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The suspension of the Fe3O4 nanoparticles. (b) Scanning electron microscope image of FONPs.
Fig. 2
Fig. 2 (a) Linear transmission spectra and (b) nonlinear optical absorption of FONPs solution SA. (c) Schematic diagram of experiment setup of nonlinear optical absorption measurement. (d) Damage threshold of FONPs SA.
Fig. 3
Fig. 3 Schematic diagram of passively Q-switched Nd:YVO4 laser structure.
Fig. 4
Fig. 4 (a) The pulse trains of and (b) single pulse profiles of the Q-switched laser under the pump power of 5 W, 8 W and 11 W. (c) Evolutions of the repetition rate and of the pulse duration with the pump power. (d) The average output power of CW and of QS versus the pump power. (e) The single pulse energy and peak power curves. (f) The emission spectrums of CW and QS operations.

Tables (1)

Tables Icon

Table 1 Development of pulsed laser based on FONPs SAs

Metrics