Abstract

The recent success of the surface passivation of lead chalcogenide quantum dots for enhancing ambient stability offers further investigation of surface states in air. Here we studied the photoresponses due to surface passivation and oxygen, thus providing the relations of surface states and the photoresponse of PbSe QD films by monitoring the changes in QD film with air exposure. A dramatic near-infrared photoresponse was observed when the PbSe film stabilized through surface passivation was exposed to air. As a result of estimating the density of trap states from the FET characteristics, it was confirmed that the iodide-passivated PbSe film exposed to the air had more trap states than the nitrogen atmosphere. The increase of the trap state due to oxygen adsorption led to the increase of the trap-captured photogenerated electrons, which increased the photoconduction gain. Even though some trap states have a negative impact on device parameters such as charge mobility and response time, controlling the oxygen-related trap states on QD surface is expected to enhance the photoresponsivity on the QD-based photoconductive films without performance degradation in air.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High performance infrared photodetectors up to 2.8 µm wavelength based on lead selenide colloidal quantum dots

M. Thambidurai, Youngjin Jang, Arthur Shapiro, Gao Yuan, Hu Xiaonan, Yu Xuechao, Qi Jie Wang, Efrat Lifshitz, Hilmi Volkan Demir, and Cuong Dang
Opt. Mater. Express 7(7) 2326-2335 (2017)

Fabrication and enhanced optical properties of ZnSe:Mn quantum dots/poly(LMA-co-EGDMA) composite thin film by alkylthiol modification

Gai Xu, Yuebin Li, Yu Qin, Zuli Liu, Junbo Han, Yibo Han, and Kailun Yao
Opt. Mater. Express 5(6) 1460-1468 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
    [Crossref] [PubMed]
  2. J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
    [Crossref] [PubMed]
  3. G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
    [Crossref] [PubMed]
  4. A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
    [Crossref]
  5. G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal Infrared photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
    [Crossref]
  6. F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
    [Crossref] [PubMed]
  7. Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
    [Crossref]
  8. J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
    [Crossref]
  9. J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
    [Crossref] [PubMed]
  10. W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
    [Crossref] [PubMed]
  11. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
    [Crossref] [PubMed]
  12. Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
    [Crossref] [PubMed]
  13. H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
    [Crossref]
  14. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
    [Crossref] [PubMed]
  15. J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
    [Crossref] [PubMed]
  16. D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
    [Crossref] [PubMed]
  17. J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
    [Crossref] [PubMed]
  18. K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
    [Crossref]
  19. J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
    [Crossref]
  20. H. T. Minden, “Effects of oxygen on PbS films,” J. Chem. Phys. 23(10), 1948–1955 (1955).
    [Crossref]
  21. P. Nagpal and V. I. Klimov, “Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films,” Nat. Commun. 2, 486 (2011).
    [Crossref] [PubMed]
  22. S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
    [Crossref] [PubMed]
  23. Y. Dan, “Optoelectronically probing the density of nanowire surface trap states to the single state limit,” Appl. Phys. Lett. 106(5), 053117 (2015).
    [Crossref]
  24. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
    [Crossref]
  25. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [Crossref] [PubMed]
  26. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
    [Crossref] [PubMed]
  27. W. L. Kalb and B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods,” Phys. Rev. B 81(3), 035327 (2010).
    [Crossref]
  28. A. R. Völkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev. B 66(19), 195336 (2002).
    [Crossref]
  29. W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
    [Crossref]

2016 (1)

J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
[Crossref]

2015 (4)

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Y. Dan, “Optoelectronically probing the density of nanowire surface trap states to the single state limit,” Appl. Phys. Lett. 106(5), 053117 (2015).
[Crossref]

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

2014 (2)

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

2013 (2)

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
[Crossref]

2012 (2)

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

2011 (4)

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

P. Nagpal and V. I. Klimov, “Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films,” Nat. Commun. 2, 486 (2011).
[Crossref] [PubMed]

2010 (6)

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
[Crossref]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

W. L. Kalb and B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods,” Phys. Rev. B 81(3), 035327 (2010).
[Crossref]

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal Infrared photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

2009 (1)

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

2008 (2)

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

2007 (1)

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
[Crossref]

2006 (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

2005 (1)

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[Crossref] [PubMed]

2002 (1)

A. R. Völkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev. B 66(19), 195336 (2002).
[Crossref]

1955 (1)

H. T. Minden, “Effects of oxygen on PbS films,” J. Chem. Phys. 23(10), 1948–1955 (1955).
[Crossref]

Adinolfi, V.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Alivisatos, A. P.

J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
[Crossref]

Amassian, A.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Aydil, E. S.

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
[Crossref]

Bae, W. K.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Bakr, O. M.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Barkelid, M.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Barkhouse, D. A. R.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Batlogg, B.

W. L. Kalb and B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods,” Phys. Rev. B 81(3), 035327 (2010).
[Crossref]

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

Beard, M. C.

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

Bergey, E. J.

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

Berry, N. E.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Bhang, H. E.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Bronstein, N. D.

J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
[Crossref]

Brzozowski, L.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Buchs, G.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Buscema, M.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Bustamante, J.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

Cao, M.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Carey, G.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Chang, W. S.

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

Che, Y.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Choi, H.

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Choi, J.-H.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Choudhury, K. R.

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal Infrared photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

Clifford, J.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Dai, H.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Dan, Y.

Y. Dan, “Optoelectronically probing the density of nanowire surface trap states to the single state limit,” Appl. Phys. Lett. 106(5), 053117 (2015).
[Crossref]

Debnath, R.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Ding, H.

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

Ding, X.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Dolocan, A. D.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Dong, H.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Doyeux, V.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Dvoracek, C.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Etaki, S.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Galloway, J. F.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Gao, J.

J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
[Crossref]

Gao, Y.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Gaulding, E. A.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Gearba, R.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Gibbs, M.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

Haas, S.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

Hill, I.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Hinds, S.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

Hong, S.-H.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Hoogland, S.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Houtepen, A. J.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Jamakosmanovic, D.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Jeong, S.

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Joo, J.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Kagan, C. R.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Kalb, W. L.

W. L. Kalb and B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods,” Phys. Rev. B 81(3), 035327 (2010).
[Crossref]

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

Kang, M. S.

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
[Crossref]

Kemp, K. W.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Kim, K.

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Kim, Y.-H.

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Kirmani, A. R.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Klimov, V. I.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

P. Nagpal and V. I. Klimov, “Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films,” Nat. Commun. 2, 486 (2011).
[Crossref] [PubMed]

Knipp, D.

A. R. Völkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev. B 66(19), 195336 (2002).
[Crossref]

Ko, J.-H.

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Koh, W. K.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Koleilat, G. I.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

Konstantatos, G.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Koppens, F. H. L.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Krellner, C.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

Kufer, D.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Labelle, A.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Lasanta, T.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Law, M.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

Lee, D. C.

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Lee, K. H.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Lee, S.-M.

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

Lei, K. W.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Leschkies, K. S.

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
[Crossref]

Levina, L.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Li, M.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Lin, Q.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Liu, H.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

Luo, H.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Luther, J. M.

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

Mathis, T.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

Minden, H. T.

H. T. Minden, “Effects of oxygen on PbS films,” J. Chem. Phys. 23(10), 1948–1955 (1955).
[Crossref]

Minor, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Murray, C. B.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[Crossref] [PubMed]

Myrskog, S. H.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

Nagpal, P.

P. Nagpal and V. I. Klimov, “Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films,” Nat. Commun. 2, 486 (2011).
[Crossref] [PubMed]

Navickaite, G.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Nelson, C. A.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Nguyen, A. C.

J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
[Crossref]

Nguyen, D.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Nikitskiy, I.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Ning, Z.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Norris, D. J.

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
[Crossref]

Nozik, A. J.

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

Oh, S. J.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Padilha, L. A.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Paik, T.

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

Palmiano, E.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Pan, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Park, J.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Pattantyus-Abraham, A. G.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

Perkins, C. L.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

Pietryga, J. M.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Pomper, M. G.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Prasad, P. N.

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

Prins, F.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Qiu, J.

J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
[Crossref]

Rollny, L.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Roy, I.

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

Sarasqueta, G.

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal Infrared photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

Sargent, E. H.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
[Crossref]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Searson, P. C.

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Seldenthuis, J. S.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Shi, Z.

J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
[Crossref]

Shim, H. C.

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

Shukla, H.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

Siebbeles, L. D. A.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

So, F.

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal Infrared photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

So, H.-M.

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

Song, J. H.

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Song, Q.

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

Song, X.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Street, R. A.

A. R. Völkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev. B 66(19), 195336 (2002).
[Crossref]

Sun, J.-P.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Sutherland, B.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Talapin, D. V.

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[Crossref] [PubMed]

Tang, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Tolentino, J.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

van der Zant, H. S. J.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Völkel, A. R.

A. R. Völkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev. B 66(19), 195336 (2002).
[Crossref]

Voznyy, O.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Wang, J.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Wang, X.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Weng, B.

J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
[Crossref]

Williams, K.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Wolcott, A.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Wolowiec, R.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

Won, J.

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

Woo, J. Y.

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

Xu, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Yager, K. G.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Yao, J.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Yong, K.-T.

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

Yuan, Z.

J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
[Crossref]

Zarghami, M. H.

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

Zhang, G.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

Zhu, X.-Y.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Zwiller, V.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

ACS Nano (4)

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[Crossref] [PubMed]

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano 4(2), 869–878 (2010).
[Crossref] [PubMed]

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano 2(2), 271–280 (2008).
[Crossref] [PubMed]

S. J. Oh, N. E. Berry, J.-H. Choi, E. A. Gaulding, T. Paik, S.-H. Hong, C. B. Murray, and C. R. Kagan, “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS Nano 7(3), 2413–2421 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

J. Gao, A. C. Nguyen, N. D. Bronstein, and A. P. Alivisatos, “Solution-processed, high-speed, and high-quantum-efficiency quantum dot Infrared photodetectors,” ACS Photonics 3(7), 1217–1222 (2016).
[Crossref]

Adv. Mater. (1)

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. Dan, “Optoelectronically probing the density of nanowire surface trap states to the single state limit,” Appl. Phys. Lett. 106(5), 053117 (2015).
[Crossref]

H.-M. So, H. Choi, H. C. Shim, S.-M. Lee, S. Jeong, and W. S. Chang, “Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors,” Appl. Phys. Lett. 106(9), 093507 (2015).
[Crossref]

Chem. Mater. (1)

G. Sarasqueta, K. R. Choudhury, and F. So, “Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal Infrared photodetectors,” Chem. Mater. 22(11), 3496–3501 (2010).
[Crossref]

J. Am. Chem. Soc. (2)

J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, and S. Jeong, “Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100),” J. Am. Chem. Soc. 136(25), 8883–8886 (2014).
[Crossref] [PubMed]

W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc. 134(49), 20160–20168 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Qiu, B. Weng, Z. Yuan, and Z. Shi, “Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity,” J. Appl. Phys. 113(10), 103102 (2013).
[Crossref]

J. Chem. Phys. (1)

H. T. Minden, “Effects of oxygen on PbS films,” J. Chem. Phys. 23(10), 1948–1955 (1955).
[Crossref]

J. Phys. Chem. C (2)

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris, “Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films,” J. Phys. Chem. C 114(21), 9988–9996 (2010).
[Crossref]

Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, and J. Yao, “Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids,” J. Phys. Chem. C 119(37), 21739–21743 (2015).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Nano Lett. (2)

Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, “Robust, functional nanocrystal solids by infilling with atomic layer deposition,” Nano Lett. 11(12), 5349–5355 (2011).
[Crossref] [PubMed]

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Nagpal and V. I. Klimov, “Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films,” Nat. Commun. 2, 486 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photonics 1(19), 531–534 (2007).
[Crossref]

Nature (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Phys. Rev. B (3)

W. L. Kalb and B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods,” Phys. Rev. B 81(3), 035327 (2010).
[Crossref]

A. R. Völkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev. B 66(19), 195336 (2002).
[Crossref]

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81(15), 155315 (2010).
[Crossref]

Science (1)

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[Crossref] [PubMed]

Small (2)

K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. E. Bhang, M. G. Pomper, and P. C. Searson, “CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging,” Small 7(22), 3148–3152 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical absorption spectra and (b) PL spectra of pristine and iodide-passivated, MPA-capped PbSe QD film with air exposure time.
Fig. 2
Fig. 2 Photoresponses measured in air for the pristine and iodide-passivated PbSe film. (a) Current as a function of time with shutter on/off at an applied bias of 0.1 V under the wavelength of 1450 nm, which the first excitonic peak. (b) Spectral photosensitivity and responsivity of two PbSe QD Films in air. The photosensitivity of pristine PbSe film was multiplied by a factor 10, for an easier comparison.
Fig. 3
Fig. 3 I-Vbg curves of (a) pristine and (b) iodide-passivated PbSe QD FETs, measured over time in N2 and air at Vds = 10 V.
Fig. 4
Fig. 4 (a) NIR photoresponse recorded for a wavelength ranging from 1150 nm to 1650 nm, and (b) Spectral photocurrent sensitivity and responsivity of the iodide-passivated PbSe film in N2 and air. A 0.1 V bias was applied for photoresponse measurement. The sensitivity and responsivity peak of the sample measured in air has shifted toward the shorter wavelength. It should be noted that the spectral resolution of our system is 100 nm, which is a fairly large value. (c) Transfer curves of the iodide-passivated PbSe QD FETs measured in N2 and air. Inset: optical image of device. The air-exposed sample was prepared by exposing the film coated in N2 to air for 3 days.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SS=( kTln10 e )[ 1+( e 2 C i ) N ]

Metrics