D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nat. Rev. Cancer 9(2), 108–122 (2009).
[Crossref]
[PubMed]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
J. H. An, K.-J. Lee, D.-H. Kim, H. N. Chae, and K.-S. Lee, “Skin fibroblast cells on 3D skin cell chip using Nanngold platform structures and three-floor structures,” Sci. Adv. Mater. 8(11), 2147–2152 (2016).
[Crossref]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
K. Chitcholtan, E. Asselin, S. Parent, P. H. Sykes, and J. J. Evans, “Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer,” Exp. Cell Res. 319(1), 75–87 (2013).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2007).
[Crossref]
[PubMed]
S. Breslin and L. O’Driscoll, “Three-dimensional cell culture: the missing link in drug discovery,” Drug Discov. Today 18(5-6), 240–249 (2013).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
J. Debnath and J. S. Brugge, “Modelling glandular epithelial cancers in three-dimensional cultures,” Nat. Rev. Cancer 5(9), 675–688 (2005).
[Crossref]
[PubMed]
K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, and Z. Brzozka, “Development of a three-dimensional microfluidic system for long-term tumor spheroid culture,” Sensor Actuator B. 173, 908–913 (2012).
[Crossref]
K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, and Z. Brzózka, “Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip,” Biosens. Bioelectron. 40(1), 68–74 (2013).
[Crossref]
[PubMed]
D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nat. Rev. Cancer 9(2), 108–122 (2009).
[Crossref]
[PubMed]
T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28(27), 4006–4016 (2007).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
J. H. An, K.-J. Lee, D.-H. Kim, H. N. Chae, and K.-S. Lee, “Skin fibroblast cells on 3D skin cell chip using Nanngold platform structures and three-floor structures,” Sci. Adv. Mater. 8(11), 2147–2152 (2016).
[Crossref]
C. T. Kuo, C. L. Chiang, R. Y. Huang, H. Lee, and A. M. Wo, “Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics,” NPG Asia Mater. 4(9), e27 (2012).
[Crossref]
K. Chitcholtan, E. Asselin, S. Parent, P. H. Sykes, and J. J. Evans, “Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer,” Exp. Cell Res. 319(1), 75–87 (2013).
[Crossref]
[PubMed]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, and Z. Brzózka, “Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip,” Biosens. Bioelectron. 40(1), 68–74 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, and Z. Brzozka, “Development of a three-dimensional microfluidic system for long-term tumor spheroid culture,” Sensor Actuator B. 173, 908–913 (2012).
[Crossref]
L. Meli, E. T. Jordan, D. S. Clark, R. J. Linhardt, and J. S. Dordick, “Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems,” Biomaterials 33(35), 9087–9096 (2012).
[Crossref]
[PubMed]
D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, “Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells,” Biomaterials 31(32), 8494–8506 (2010).
[Crossref]
[PubMed]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
J. Debnath and J. S. Brugge, “Modelling glandular epithelial cancers in three-dimensional cultures,” Nat. Rev. Cancer 5(9), 675–688 (2005).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
H. Wang, Y.-L. Zhang, W. Wang, H. Ding, and H.-B. Sun, “On-chip laser processing for the development of multifunctional microfluidic chips,” Laser Photonics Rev. 11(2), 1600116 (2017).
[Crossref]
B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref]
[PubMed]
B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref]
[PubMed]
L. Meli, E. T. Jordan, D. S. Clark, R. J. Linhardt, and J. S. Dordick, “Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems,” Biomaterials 33(35), 9087–9096 (2012).
[Crossref]
[PubMed]
K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, and Z. Brzózka, “Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip,” Biosens. Bioelectron. 40(1), 68–74 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, and Z. Brzozka, “Development of a three-dimensional microfluidic system for long-term tumor spheroid culture,” Sensor Actuator B. 173, 908–913 (2012).
[Crossref]
J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref]
[PubMed]
K. Chitcholtan, E. Asselin, S. Parent, P. H. Sykes, and J. J. Evans, “Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer,” Exp. Cell Res. 319(1), 75–87 (2013).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
M. M. Gottesman, “Mechanisms of cancer drug resistance,” Annu. Rev. Med. 53(1), 615–627 (2002).
[Crossref]
[PubMed]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
D. Huh, G. A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” Trends Cell Biol. 21(12), 745–754 (2011).
[Crossref]
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
C. T. Kuo, C. L. Chiang, R. Y. Huang, H. Lee, and A. M. Wo, “Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics,” NPG Asia Mater. 4(9), e27 (2012).
[Crossref]
D. Huh, G. A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” Trends Cell Biol. 21(12), 745–754 (2011).
[Crossref]
[PubMed]
D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, “Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells,” Biomaterials 31(32), 8494–8506 (2010).
[Crossref]
[PubMed]
D. Huh, G. A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” Trends Cell Biol. 21(12), 745–754 (2011).
[Crossref]
[PubMed]
J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref]
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
L. Meli, E. T. Jordan, D. S. Clark, R. J. Linhardt, and J. S. Dordick, “Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems,” Biomaterials 33(35), 9087–9096 (2012).
[Crossref]
[PubMed]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
S. K. Martin, M. Kamelgarn, and N. Kyprianou, “Cytoskeleton targeting value in prostate cancer treatment,” Am. J. Clin. Exp. Urol. 2(1), 15–26 (2014).
[PubMed]
S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,” Nat. Biotechnol. 26(1), 120–126 (2007).
[Crossref]
[PubMed]
T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D.-Y. Yang, and K.-S. Lee, “Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists,” Adv. Funct. Mater. 16(9), 1235–1241 (2006).
[Crossref]
J. H. An, K.-J. Lee, D.-H. Kim, H. N. Chae, and K.-S. Lee, “Skin fibroblast cells on 3D skin cell chip using Nanngold platform structures and three-floor structures,” Sci. Adv. Mater. 8(11), 2147–2152 (2016).
[Crossref]
T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys., A Mater. Sci. Process. 92(3), 541–545 (2008).
[Crossref]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
S. H. Park, S. H. Lee, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87(15), 154108 (2005).
[Crossref]
C. T. Kuo, C. L. Chiang, R. Y. Huang, H. Lee, and A. M. Wo, “Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics,” NPG Asia Mater. 4(9), e27 (2012).
[Crossref]
K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, and Z. Brzózka, “Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip,” Biosens. Bioelectron. 40(1), 68–74 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, and Z. Brzozka, “Development of a three-dimensional microfluidic system for long-term tumor spheroid culture,” Sensor Actuator B. 173, 908–913 (2012).
[Crossref]
S. K. Martin, M. Kamelgarn, and N. Kyprianou, “Cytoskeleton targeting value in prostate cancer treatment,” Am. J. Clin. Exp. Urol. 2(1), 15–26 (2014).
[PubMed]
C. T. Kuo, C. L. Chiang, R. Y. Huang, H. Lee, and A. M. Wo, “Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics,” NPG Asia Mater. 4(9), e27 (2012).
[Crossref]
J. H. An, K.-J. Lee, D.-H. Kim, H. N. Chae, and K.-S. Lee, “Skin fibroblast cells on 3D skin cell chip using Nanngold platform structures and three-floor structures,” Sci. Adv. Mater. 8(11), 2147–2152 (2016).
[Crossref]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
J. H. An, K.-J. Lee, D.-H. Kim, H. N. Chae, and K.-S. Lee, “Skin fibroblast cells on 3D skin cell chip using Nanngold platform structures and three-floor structures,” Sci. Adv. Mater. 8(11), 2147–2152 (2016).
[Crossref]
T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys., A Mater. Sci. Process. 92(3), 541–545 (2008).
[Crossref]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D.-Y. Yang, and K.-S. Lee, “Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists,” Adv. Funct. Mater. 16(9), 1235–1241 (2006).
[Crossref]
S. H. Park, S. H. Lee, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87(15), 154108 (2005).
[Crossref]
S. H. Park, S. H. Lee, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87(15), 154108 (2005).
[Crossref]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys., A Mater. Sci. Process. 92(3), 541–545 (2008).
[Crossref]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D.-Y. Yang, and K.-S. Lee, “Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists,” Adv. Funct. Mater. 16(9), 1235–1241 (2006).
[Crossref]
L. Meli, E. T. Jordan, D. S. Clark, R. J. Linhardt, and J. S. Dordick, “Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems,” Biomaterials 33(35), 9087–9096 (2012).
[Crossref]
[PubMed]
D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, “Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells,” Biomaterials 31(32), 8494–8506 (2010).
[Crossref]
[PubMed]
D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, “Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells,” Biomaterials 31(32), 8494–8506 (2010).
[Crossref]
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
S. K. Martin, M. Kamelgarn, and N. Kyprianou, “Cytoskeleton targeting value in prostate cancer treatment,” Am. J. Clin. Exp. Urol. 2(1), 15–26 (2014).
[PubMed]
T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28(27), 4006–4016 (2007).
[Crossref]
[PubMed]
L. Meli, E. T. Jordan, D. S. Clark, R. J. Linhardt, and J. S. Dordick, “Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems,” Biomaterials 33(35), 9087–9096 (2012).
[Crossref]
[PubMed]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28(27), 4006–4016 (2007).
[Crossref]
[PubMed]
S. Breslin and L. O’Driscoll, “Three-dimensional cell culture: the missing link in drug discovery,” Drug Discov. Today 18(5-6), 240–249 (2013).
[Crossref]
[PubMed]
T. Ozben, “Mechanisms and strategies to overcome multiple drug resistance in cancer,” FEBS Lett. 580(12), 2903–2909 (2006).
[Crossref]
[PubMed]
K. Chitcholtan, E. Asselin, S. Parent, P. H. Sykes, and J. J. Evans, “Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer,” Exp. Cell Res. 319(1), 75–87 (2013).
[Crossref]
[PubMed]
T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys., A Mater. Sci. Process. 92(3), 541–545 (2008).
[Crossref]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D.-Y. Yang, and K.-S. Lee, “Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists,” Adv. Funct. Mater. 16(9), 1235–1241 (2006).
[Crossref]
S. H. Park, S. H. Lee, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87(15), 154108 (2005).
[Crossref]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D.-Y. Yang, and K.-S. Lee, “Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists,” Adv. Funct. Mater. 16(9), 1235–1241 (2006).
[Crossref]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28(27), 4006–4016 (2007).
[Crossref]
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, “Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells,” Biomaterials 31(32), 8494–8506 (2010).
[Crossref]
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28(27), 4006–4016 (2007).
[Crossref]
[PubMed]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys., A Mater. Sci. Process. 92(3), 541–545 (2008).
[Crossref]
J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[Crossref]
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, and Z. Brzózka, “Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip,” Biosens. Bioelectron. 40(1), 68–74 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, and Z. Brzozka, “Development of a three-dimensional microfluidic system for long-term tumor spheroid culture,” Sensor Actuator B. 173, 908–913 (2012).
[Crossref]
D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, “Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells,” Biomaterials 31(32), 8494–8506 (2010).
[Crossref]
[PubMed]
H. Wang, Y.-L. Zhang, W. Wang, H. Ding, and H.-B. Sun, “On-chip laser processing for the development of multifunctional microfluidic chips,” Laser Photonics Rev. 11(2), 1600116 (2017).
[Crossref]
B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref]
[PubMed]
K. Chitcholtan, E. Asselin, S. Parent, P. H. Sykes, and J. J. Evans, “Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer,” Exp. Cell Res. 319(1), 75–87 (2013).
[Crossref]
[PubMed]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
T. R. Sodunke, K. K. Turner, S. A. Caldwell, K. W. McBride, M. J. Reginato, and H. M. Noh, “Micropatterns of Matrigel for three-dimensional epithelial cultures,” Biomaterials 28(27), 4006–4016 (2007).
[Crossref]
[PubMed]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
H. Wang, Y.-L. Zhang, W. Wang, H. Ding, and H.-B. Sun, “On-chip laser processing for the development of multifunctional microfluidic chips,” Laser Photonics Rev. 11(2), 1600116 (2017).
[Crossref]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
H. Wang, Y.-L. Zhang, W. Wang, H. Ding, and H.-B. Sun, “On-chip laser processing for the development of multifunctional microfluidic chips,” Laser Photonics Rev. 11(2), 1600116 (2017).
[Crossref]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nat. Rev. Cancer 9(2), 108–122 (2009).
[Crossref]
[PubMed]
C. T. Kuo, C. L. Chiang, R. Y. Huang, H. Lee, and A. M. Wo, “Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics,” NPG Asia Mater. 4(9), e27 (2012).
[Crossref]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]
B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref]
[PubMed]
B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref]
[PubMed]
K.-J. Lee, J. H. An, C. W. Ha, Y. Son, D.-Y. Yang, J. Jung, K.-S. Lee, and J.-W. Choi, “3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects,” J. Biomed. Nanotechnol. 12(12), 2125–2138 (2016).
[Crossref]
T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys., A Mater. Sci. Process. 92(3), 541–545 (2008).
[Crossref]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D.-Y. Yang, and K.-S. Lee, “Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists,” Adv. Funct. Mater. 16(9), 1235–1241 (2006).
[Crossref]
S. H. Park, S. H. Lee, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87(15), 154108 (2005).
[Crossref]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[Crossref]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
H. Wang, Y.-L. Zhang, W. Wang, H. Ding, and H.-B. Sun, “On-chip laser processing for the development of multifunctional microfluidic chips,” Laser Photonics Rev. 11(2), 1600116 (2017).
[Crossref]
B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref]
[PubMed]
L. Hou, Q. Feng, Y. Wang, X. Yang, J. Ren, Y. Shi, X. Shan, Y. Yuan, Y. Wang, and Z. Zhang, “Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer,” Nanotechnology 27(1), 015701 (2016).
[Crossref]
[PubMed]
C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncol. Rep. 20(6), 1465–1471 (2008).
[PubMed]
P. L. Zinzani, C. Pellegrini, L. Gandolfi, B. Casadei, E. Derenzini, A. Broccoli, F. Quirini, L. Argnani, S. Pileri, M. Celli, S. Fanti, V. Poletti, V. Stefoni, and M. Baccarani, “Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens,” Hematol. Oncol. 31(4), 183–188 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, and Z. Brzózka, “Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip,” Biosens. Bioelectron. 40(1), 68–74 (2013).
[Crossref]
[PubMed]
K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, and Z. Brzozka, “Development of a three-dimensional microfluidic system for long-term tumor spheroid culture,” Sensor Actuator B. 173, 908–913 (2012).
[Crossref]
H. L. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X. J. Liang, “Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration,” Mol. Imaging 11(6), 487–498 (2012).
[PubMed]