Abstract

Liquid crystal (LC) cells with photopolymers usually exhibit a fast response time but inevitably present decreased optical transmittance and lower contrast ratio due to incomplete dark states. In this study, we show that this issue can be improved when photopolymerization at low temperature is considered. Comparing performance with the 4 wt% RM257-doped fringe-field switching (FFS) LC cell photopolymerized at room temperature, the 1.4 wt% RM257-doped FFS LC cell photopolymerized at low temperature (273 K) shows better contrast ratio and lower operating voltage. In addition, the electrostriction effect can be also reduced in LC cells with lower RM257-doped concentration. As a result, the 1.4 wt% RM257-doped FFS cell shows a response time as fast as that in the 4 wt% RM257-doped FFS cell. Meanwhile, the average response time for gray-to-gray switching of the optimal FFS cell is 4.9 ms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly enhanced voltage holding property for low-frequency-driven fringe-field switching liquid crystal mode by charge-trapping effect of carbon-nanotube-doped surface

Jun-Chan Choi, Dong-Jin Lee, Min-Kyu Park, Ji-Sub Park, Joun-Ho Lee, Ji-Ho Baek, Hyun Chul Choi, and Hak-Rin Kim
Opt. Express 27(20) 29178-29195 (2019)

Polarized UV cured reactive mesogens for fast switching and low voltage driving liquid crystal device

Hyung-Koo Chung, Won-Kyu Lee, Hong-Gyu Park, Hak Moo Lee, Hae-Chang Jeong, Min-Cha Cho, and Dae-Shik Seo
Opt. Express 22(18) 21551-21559 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
    [Crossref]
  2. S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
    [Crossref]
  3. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  4. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
    [Crossref]
  5. Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
    [Crossref]
  6. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  7. M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Disp. Technol. 10(8), 635–641 (2014).
    [Crossref]
  8. M. Emoto and M. Sugawara, “Critical fusion frequency for bright and wide field-of-view image display,” J. Disp. Technol. 8(7), 424–429 (2012).
    [Crossref]
  9. H. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys. 104(8), 084515 (2008).
    [Crossref]
  10. D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
    [Crossref]
  11. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  12. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
    [Crossref]
  13. Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
    [Crossref]
  14. H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
    [Crossref]
  15. J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B. Polym. Phys. 52(3), 183–192 (2014).
    [Crossref]
  16. Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
    [Crossref] [PubMed]
  17. C. Y. Chien, C. J. Hsu, Y. W. Chen, S. H. Tseng, and C. R. Sheu, “Holographic polymer networks formed in liquid crystal phase modulators via a He-Ne laser to achieve ultra-fast optical response,” Opt. Express 24(7), 7534–7542 (2016).
    [Crossref] [PubMed]
  18. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
    [Crossref]
  19. G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
    [Crossref]
  20. Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
    [Crossref]
  21. S. W. Oh, J. H. Park, and T. H. Yoon, “Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer,” Opt. Express 23(2), 1044–1051 (2015).
    [Crossref] [PubMed]
  22. S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
    [Crossref]
  23. S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
    [Crossref]
  24. C. J. Hsu, B. L. Chen, and C. Y. Huang, “Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate,” Opt. Express 24(2), 1463–1471 (2016).
    [Crossref] [PubMed]
  25. C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
    [Crossref]
  26. R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
    [Crossref] [PubMed]
  27. B. W. Park, S. W. Oh, J. W. Kim, and T. H. Yoon, “Fast switching of vertically aligned liquid crystal by low-temperature curing of the polymer structure,” J. Opt. Soc. Korea 18(4), 395–400 (2014).
    [Crossref]
  28. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006), Chap. 5.
  29. D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
    [Crossref]
  30. S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
    [Crossref]
  31. W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Liq. Cryst. 63(1), 83–109 (1981).
    [Crossref]

2016 (2)

2015 (4)

S. W. Oh, J. H. Park, and T. H. Yoon, “Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer,” Opt. Express 23(2), 1044–1051 (2015).
[Crossref] [PubMed]

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

2014 (7)

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B. Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
[Crossref]

M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Disp. Technol. 10(8), 635–641 (2014).
[Crossref]

B. W. Park, S. W. Oh, J. W. Kim, and T. H. Yoon, “Fast switching of vertically aligned liquid crystal by low-temperature curing of the polymer structure,” J. Opt. Soc. Korea 18(4), 395–400 (2014).
[Crossref]

2013 (3)

D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
[Crossref]

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

2012 (1)

M. Emoto and M. Sugawara, “Critical fusion frequency for bright and wide field-of-view image display,” J. Disp. Technol. 8(7), 424–429 (2012).
[Crossref]

2009 (1)

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

2008 (2)

H. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys. 104(8), 084515 (2008).
[Crossref]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

2007 (1)

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

2006 (1)

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

2005 (1)

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

2004 (1)

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

2000 (1)

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1996 (1)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

1990 (1)

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

1981 (1)

W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Liq. Cryst. 63(1), 83–109 (1981).
[Crossref]

An, Z.

Baek, J. H.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Chen, B. L.

Chen, B. Y.

Chen, H.

Chen, T. J.

Chen, Y.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
[Crossref]

Chen, Y. W.

Chien, C. Y.

Chien, L. C.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Choi, Y. E.

De Jeu, W. H.

W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Liq. Cryst. 63(1), 83–109 (1981).
[Crossref]

Emoto, M.

M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Disp. Technol. 10(8), 635–641 (2014).
[Crossref]

M. Emoto and M. Sugawara, “Critical fusion frequency for bright and wide field-of-view image display,” J. Disp. Technol. 8(7), 424–429 (2012).
[Crossref]

Ge, Z.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

He, J.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

Hsu, C. J.

Hu, M.

Huang, C. Y.

Hudson, S. D.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Jang, J.

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

Jung, S. H.

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

Kim, B. K.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Kim, D. H.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Kim, H. Y.

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kim, J. C.

H. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys. 104(8), 084515 (2008).
[Crossref]

Kim, J. H.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

Kim, J. W.

Kim, K. H.

H. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys. 104(8), 084515 (2008).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. J.

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

Kim, S. M.

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. S.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

Kim, Y.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Komitov, L.

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Kusakabe, Y.

M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Disp. Technol. 10(8), 635–641 (2014).
[Crossref]

Lee, G. D.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, J. H.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Lee, S. H.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, Y. J.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Lee, Y. K.

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

Li, J.

Li, M. C.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Lim, Y. J.

Lin, G. J.

Luo, Z.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
[Crossref]

Lyu, J. J.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Ma, R. Q.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Nam, S. H.

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

Oh, S. W.

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Park, B. W.

Park, J. H.

Park, J. W.

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

Park, K. C.

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

Peng, F.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
[Crossref]

Rajaram, C. V.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Rao, L.

D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
[Crossref]

Sheu, C. R.

Shin, H.

H. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys. 104(8), 084515 (2008).
[Crossref]

Song, S. H.

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

Sugawara, M.

M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Disp. Technol. 10(8), 635–641 (2014).
[Crossref]

M. Emoto and M. Sugawara, “Critical fusion frequency for bright and wide field-of-view image display,” J. Disp. Technol. 8(7), 424–429 (2012).
[Crossref]

Sun, J.

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B. Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

Tan, G.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

Tsai, W. C.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Tseng, S. H.

Tu, C. D.

D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
[Crossref]

Wu, C. S.

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Wu, J. J.

Wu, S. T.

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B. Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
[Crossref]

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Wu, S.-T.

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

Wu, T. X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

Xu, D.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
[Crossref]

Yan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yang, D. K.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Yang, Y. J.

Yoon, T. H.

Yu, C. J.

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

Yuan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Zhu, X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

Appl. Phys. Lett. (5)

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Chem. Mater. (1)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

J. Appl. Phys. (2)

D. Xu, F. Peng, G. Tan, J. He, and S.-T. Wu, “A semi-empirical equation for the response time of in-plane switching liquid crystal display and measurement of twist elastic constant,” J. Appl. Phys. 117(20), 203103 (2015).
[Crossref]

H. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys. 104(8), 084515 (2008).
[Crossref]

J. Disp. Technol. (5)

D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

Y. Chen, Z. Luo, F. Peng, and S. T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013).
[Crossref]

M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Disp. Technol. 10(8), 635–641 (2014).
[Crossref]

M. Emoto and M. Sugawara, “Critical fusion frequency for bright and wide field-of-view image display,” J. Disp. Technol. 8(7), 424–429 (2012).
[Crossref]

J. Opt. Soc. Korea (1)

J. Phys. D Appl. Phys. (1)

Y. Kim, Y. J. Lee, D. H. Kim, J. H. Baek, J. H. Lee, B. K. Kim, C. J. Yu, and J. H. Kim, “Fast response time of fringe-field switching liquid crystal mode devices with reactive mesogens in a planar alignment layer,” J. Phys. D Appl. Phys. 46(48), 485306 (2013).
[Crossref]

J. Polym. Sci., Part B. Polym. Phys. (1)

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B. Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. H. Jung, H. Y. Kim, S. H. Song, J. H. Kim, S. H. Nam, and S. H. Lee, “Analysis of optimal phase retardation of a fringe field-driven homogeneously aligned nematic liquid crystal cell,” Jpn. J. Appl. Phys. 43(3), 1028–1031 (2004).
[Crossref]

S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005).
[Crossref]

Liq. Cryst. (3)

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Liq. Cryst. 63(1), 83–109 (1981).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (3)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Other (1)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Comparisons of V–T curves and normalized transmittance spectra for FFS cells. One cell was filled with LC377 LCs only, whereas the other cells were filled with various percentages of RM257 dopant and photopolymerized at room temperature (298 K). (a) V–T curves (b) normalized transmittance spectra.
Fig. 2
Fig. 2 Comparisons between POM images in OFF- and ON-states with respect to FFS cells with various percentages of RM257 dopants. (a) OFF-state with zero applied voltage. (b) ON-state with individual applied Von voltages, as shown in Table 2. Red dash lines indicate the centers of neighbor electrodes in the FFS cells.
Fig. 3
Fig. 3 Comparisons of response time in FFS LC cells (the same as in Fig. 1) (a) rising time (b) falling time.
Fig. 4
Fig. 4 Comparisons of V–T curves and response time in lower RM257-doped FFS LC cells and one LC377-only-filled cell with photopolymerization at low temperature (273 K). (a) V–T curves; (b) response time curves.
Fig. 5
Fig. 5 Comparisons of normalized transmittance spectra and POM images in low concentration RM257-doped FFS cells photopolymerized at 273 K. (a) normalized transmittance spectra. (b) POM images of FFS cells with respect to individual OFF- and ON-states.
Fig. 6
Fig. 6 Local scheme of LC reorientations in a FFS cell from the top viewing direction. The Region-2 area means that the incident light can pass through the cell with a pair of crossed polarizers to show a bright area in the POM image. The z-axis direction is perpendicular to the glass substrates of the FFS cell.
Fig. 7
Fig. 7 SEM cross-section images of decomposed FFS cells. The cells are labeled with (a) F-298-1.2, (b) F-298-2, (c) F-298-3, (d) F-298-4, (e) F-273-1.2, (f) F-273-1.3, and (g) F-273-1.4. The area between both parallel green dash lines mean LC layer for each cell.

Tables (6)

Tables Icon

Table 1 RM257 percentages and processing temperatures for all FFS LC cells in the experiments

Tables Icon

Table 2 Electro-optical performance of FFS LC cells (the same as in Fig. 1)

Tables Icon

Table 3 Electro-optical performance of FFS LC cells (the same as that in Fig. 4)

Tables Icon

Table 4 Parameter list for discussing mechanism of response time based on theoretical two dimensional Erickson-Leslie equation.

Tables Icon

Table 5 Transmittance versus applied voltages for eight gray levels of the F-273-1.4 cell

Tables Icon

Table 6 Response time (ms) under gray-to-gray switching of the F-273-1.4 cell

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K 22 2 ϕ z 2 + K 11 2 ϕ x 2 + ε 0 Δε E 2 ϕ= γ 1 ϕ t ,
V c =l×π 1 ε 0 Δε ( K 22 d 2 + K 11 D 2 )
ϕ(x,z,t) ϕ m sin( πz d )sin( πz D )exp( t τ 0 )
τ 0 = γ 1 π 2 ( K 22 d 2 + K 11 D 2 )

Metrics