Abstract

The absorption spectrum of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) of the chemical formula Q2SnCl2 is calculated making use of first-principles methods and is compared with the experimental data. The energy correction terms for the excitation energies are computed by considering the single excited molecular orbitals (SEMO) from ground state to excited states of the molecule. By this approach, the contributions of the Columbic interaction between an excited electron and the remained hole in the absorption spectrum during the process of optical excitation are estimated. The MO energy difference and MO wave functions calculated by the density functional theory (DFT) and SEMO energy contribution are calculated. The results show that the corrections in energies by considering the contributions of the SEMO improve significantly the theoretical optical absorption spectrum. The calculations are based on DFT and necessary parameters and integrals for the computation of SEMO are obtained in DFT scheme. This method proves to be preferred compared to other ab-initio methods for calculating excited states, due to its ability in specifying MOs for any excitation energy, and also its lower computational cost. The method is applied for the first time to the calculation of the energy of transitions and specifies the electronic transition between MOs, especially in the absorption machinery of the OLED. Taking into account the contribution of the electron-hole interaction in the optical mechanism of absorption in the molecule makes the theoretical spectrum closer to that of the experiment. As a result, the crucial role of the electron-hole interaction, i.e. the interaction between the excited electron and the remained hole, in the absorption mechanism cannot be ignored..

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and theoretical approaches to understanding two-photon absorption spectra in polymethine and squaraine molecules

Jie Fu, Lazaro A. Padilha, David J. Hagan, Eric W. Van Stryland, Olga V. Przhonska, Mikhail V. Bondar, Yuriy L. Slominsky, and Alexei D. Kachkovski
J. Opt. Soc. Am. B 24(1) 67-76 (2007)

Molecular structure—two-photon absorption property relations in polymethine dyes

Jie Fu, Lazaro A. Padilha, David J. Hagan, Eric W. Van Stryland, Olga V. Przhonska, Mikhail V. Bondar, Yuriy L. Slominsky, and Alexei D. Kachkovski
J. Opt. Soc. Am. B 24(1) 56-66 (2007)

Attosecond delay in the molecular photoionization of asymmetric molecules

Alexis Chacón and Camilo Ruiz
Opt. Express 26(4) 4548-4562 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” App. Phy. Lett 51(12), 913–915 (1987).
    [Crossref]
  2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
    [Crossref]
  3. A. Buckley, Organic Light- Emitting Diodes (OLEDs) Materials, Devices and Applications (Woodhead, 2013).
    [Crossref]
  4. S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
    [Crossref]
  5. F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
    [Crossref]
  6. T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
    [Crossref]
  7. M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
    [Crossref] [PubMed]
  8. M. Klintenberg and J. O. Thomas, “Effect of configuration interaction on calculated polarized UV-VIS absorption spectra: A molecular dynamics based study,” Phys. Rev. B 56(20), 13006 (1997).
    [Crossref]
  9. F. Marsusi, J. Sabbaghzadeh, and N. D. Drummond, “Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts,” Phy. Rev. B 84, 245315 (2011).
    [Crossref]
  10. P. Elliott, K. Burke, A. Lami, and F. Furche, Reviews in Computational Chemistry, 26 (John Wiley & Sons, 2009), Chap. 3.
  11. E. Pastorczak, N. I. Gidopoulos, and K. Pernal, “Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle,” Phy. Rev. A 87, 062501 (2013).
    [Crossref]
  12. G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s function approaches,” Rev. Mod. Phys 74(2), 601–659 (2002).
    [Crossref]
  13. R. L. Martin, “Natural transition orbitals,” J. Chem. Phys 118(11), 4775–4777 (2003).
    [Crossref]
  14. R. van Meer, O. V. Gritsenko, and E. J. Baerends, “The one-electron description of excited states: natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals,” Chem. Phys. Lett 639, 315–319 (2015).
    [Crossref]
  15. M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
    [Crossref]
  16. H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
    [Crossref]
  17. Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
    [Crossref] [PubMed]
  18. H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules: an Application of Molecular Orbital Theory (Academic, 1967).
  19. Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).
  20. G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem A 111, 1554–1561 (2007).
    [Crossref] [PubMed]

2015 (1)

R. van Meer, O. V. Gritsenko, and E. J. Baerends, “The one-electron description of excited states: natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals,” Chem. Phys. Lett 639, 315–319 (2015).
[Crossref]

2013 (3)

M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
[Crossref]

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
[Crossref]

E. Pastorczak, N. I. Gidopoulos, and K. Pernal, “Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle,” Phy. Rev. A 87, 062501 (2013).
[Crossref]

2012 (2)

T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
[Crossref]

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

2011 (1)

F. Marsusi, J. Sabbaghzadeh, and N. D. Drummond, “Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts,” Phy. Rev. B 84, 245315 (2011).
[Crossref]

2009 (2)

Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

2007 (2)

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem A 111, 1554–1561 (2007).
[Crossref] [PubMed]

2004 (1)

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

2003 (1)

R. L. Martin, “Natural transition orbitals,” J. Chem. Phys 118(11), 4775–4777 (2003).
[Crossref]

2002 (1)

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s function approaches,” Rev. Mod. Phys 74(2), 601–659 (2002).
[Crossref]

1997 (1)

M. Klintenberg and J. O. Thomas, “Effect of configuration interaction on calculated polarized UV-VIS absorption spectra: A molecular dynamics based study,” Phys. Rev. B 56(20), 13006 (1997).
[Crossref]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” App. Phy. Lett 51(12), 913–915 (1987).
[Crossref]

Amini, M. M.

M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
[Crossref]

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).

Baerends, E. J.

R. van Meer, O. V. Gritsenko, and E. J. Baerends, “The one-electron description of excited states: natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals,” Chem. Phys. Lett 639, 315–319 (2015).
[Crossref]

Bagalá, P.

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

Barone, V.

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

Bloino, J.

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

Bradley, D. D. C.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Buckley, A.

A. Buckley, Organic Light- Emitting Diodes (OLEDs) Materials, Devices and Applications (Woodhead, 2013).
[Crossref]

Burke, K.

P. Elliott, K. Burke, A. Lami, and F. Furche, Reviews in Computational Chemistry, 26 (John Wiley & Sons, 2009), Chap. 3.

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Drummond, N. D.

F. Marsusi, J. Sabbaghzadeh, and N. D. Drummond, “Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts,” Phy. Rev. B 84, 245315 (2011).
[Crossref]

Elliott, P.

P. Elliott, K. Burke, A. Lami, and F. Furche, Reviews in Computational Chemistry, 26 (John Wiley & Sons, 2009), Chap. 3.

Fazaeli, Y.

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).

Friend, R. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Furche, F.

P. Elliott, K. Burke, A. Lami, and F. Furche, Reviews in Computational Chemistry, 26 (John Wiley & Sons, 2009), Chap. 3.

Gao, H. Ze

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

Gen Mo, R.

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

Gidopoulos, N. I.

E. Pastorczak, N. I. Gidopoulos, and K. Pernal, “Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle,” Phy. Rev. A 87, 062501 (2013).
[Crossref]

Gritsenko, O. V.

R. van Meer, O. V. Gritsenko, and E. J. Baerends, “The one-electron description of excited states: natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals,” Chem. Phys. Lett 639, 315–319 (2015).
[Crossref]

Hogan, C.

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

Holmes, A. B.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Huang, T.

T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
[Crossref]

Improta, R.

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

Jalilian, A.

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Janghouri, M.

M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
[Crossref]

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Kan, Y. He

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

Klintenberg, M.

M. Klintenberg and J. O. Thomas, “Effect of configuration interaction on calculated polarized UV-VIS absorption spectra: A molecular dynamics based study,” Phys. Rev. B 56(20), 13006 (1997).
[Crossref]

Lami, A.

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

P. Elliott, K. Burke, A. Lami, and F. Furche, Reviews in Computational Chemistry, 26 (John Wiley & Sons, 2009), Chap. 3.

Leo, K.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
[Crossref]

Lin, S. H.

T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
[Crossref]

Lussem, B.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
[Crossref]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Marsusi, F.

F. Marsusi, J. Sabbaghzadeh, and N. D. Drummond, “Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts,” Phy. Rev. B 84, 245315 (2011).
[Crossref]

Martin, R. L.

R. L. Martin, “Natural transition orbitals,” J. Chem. Phys 118(11), 4775–4777 (2003).
[Crossref]

Min Su, Z.

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

Mohajerani, E.

M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
[Crossref]

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Musgrave, C. B.

G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem A 111, 1554–1561 (2007).
[Crossref] [PubMed]

Najafi, E.

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).

Ng, S. W.

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).

Onida, G.

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s function approaches,” Rev. Mod. Phys 74(2), 601–659 (2002).
[Crossref]

Palummo, M.

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

Pastorczak, E.

E. Pastorczak, N. I. Gidopoulos, and K. Pernal, “Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle,” Phy. Rev. A 87, 062501 (2013).
[Crossref]

Pernal, K.

E. Pastorczak, N. I. Gidopoulos, and K. Pernal, “Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle,” Phy. Rev. A 87, 062501 (2013).
[Crossref]

Reineke, S.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
[Crossref]

Reining, L.

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s function approaches,” Rev. Mod. Phys 74(2), 601–659 (2002).
[Crossref]

Rubio, A.

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s function approaches,” Rev. Mod. Phys 74(2), 601–659 (2002).
[Crossref]

Sabbaghzadeh, J.

F. Marsusi, J. Sabbaghzadeh, and N. D. Drummond, “Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts,” Phy. Rev. B 84, 245315 (2011).
[Crossref]

Safari, N.

M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
[Crossref]

Santoro, F.

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

Sheng Qin, C.

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

Sottile, F.

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

Suzuki, H.

H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules: an Application of Molecular Orbital Theory (Academic, 1967).

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” App. Phy. Lett 51(12), 913–915 (1987).
[Crossref]

Thomas, J. O.

M. Klintenberg and J. O. Thomas, “Effect of configuration interaction on calculated polarized UV-VIS absorption spectra: A molecular dynamics based study,” Phys. Rev. B 56(20), 13006 (1997).
[Crossref]

Thomschke, M.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
[Crossref]

van Meer, R.

R. van Meer, O. V. Gritsenko, and E. J. Baerends, “The one-electron description of excited states: natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals,” Chem. Phys. Lett 639, 315–319 (2015).
[Crossref]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” App. Phy. Lett 51(12), 913–915 (1987).
[Crossref]

Yang, L.

T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
[Crossref]

Zhang, G.

G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem A 111, 1554–1561 (2007).
[Crossref] [PubMed]

Zhu, C.

T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
[Crossref]

Acta. Cryst (1)

Y. Fazaeli, E. Najafi, M. M. Amini, and S. W. Ng, “Dichloridobis(5,7-dichloroquinolin-8-olato-j2N, O)tin(IV),” Acta. Cryst E65, m270 (2009).

App. Phy. Lett (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” App. Phy. Lett 51(12), 913–915 (1987).
[Crossref]

Chem. Phy. Lett (1)

T. Huang, L. Yang, C. Zhu, and S. H. Lin, “Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation,” Chem. Phy. Lett 541, 110–116 (2012).
[Crossref]

Chem. Phys. Lett (1)

R. van Meer, O. V. Gritsenko, and E. J. Baerends, “The one-electron description of excited states: natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals,” Chem. Phys. Lett 639, 315–319 (2015).
[Crossref]

Int. J. Quan. Chem (1)

H. Ze Gao, Z. Min Su, C. Sheng Qin, R. Gen Mo, and Y. He Kan, “Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-Methyl-8- Quinolino-lato)Aluminum(III) Hydroxide Complex from Ab Initio and TD-B3LYP,” Int. J. Quan. Chem 97, 992–1001 (2004).
[Crossref]

J. Chem. Phy (1)

F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phy 126(8), 084509 (2007).
[Crossref]

J. Chem. Phys (2)

M. Palummo, C. Hogan, F. Sottile, P. Bagalá, and A. Rubio, “Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation,” J. Chem. Phys 131, 084102 (2009).
[Crossref] [PubMed]

R. L. Martin, “Natural transition orbitals,” J. Chem. Phys 118(11), 4775–4777 (2003).
[Crossref]

J. Fluoresc (1)

Y. Fazaeli, M. M. Amini, E. Najafi, E. Mohajerani, M. Janghouri, A. Jalilian, and S. W. Ng, “Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode,” J. Fluoresc 22, 1263 (2012).
[Crossref] [PubMed]

J. Phys. Chem A (1)

G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem A 111, 1554–1561 (2007).
[Crossref] [PubMed]

J. Porphyr. Phthalocya (1)

M. Janghouri, E. Mohajerani, M. M. Amini, and N. Safari, “Porphyrin doping of dichloride-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex for electroluminescence,” J. Porphyr. Phthalocya 17, 1–8 (2013).
[Crossref]

Nature (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
[Crossref]

Phy. Rev. A (1)

E. Pastorczak, N. I. Gidopoulos, and K. Pernal, “Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle,” Phy. Rev. A 87, 062501 (2013).
[Crossref]

Phy. Rev. B (1)

F. Marsusi, J. Sabbaghzadeh, and N. D. Drummond, “Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts,” Phy. Rev. B 84, 245315 (2011).
[Crossref]

Phys. Rev. B (1)

M. Klintenberg and J. O. Thomas, “Effect of configuration interaction on calculated polarized UV-VIS absorption spectra: A molecular dynamics based study,” Phys. Rev. B 56(20), 13006 (1997).
[Crossref]

Rev. Mod. Phys (2)

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys 85(3), 1245–1293 (2013).
[Crossref]

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s function approaches,” Rev. Mod. Phys 74(2), 601–659 (2002).
[Crossref]

Other (3)

H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules: an Application of Molecular Orbital Theory (Academic, 1967).

A. Buckley, Organic Light- Emitting Diodes (OLEDs) Materials, Devices and Applications (Woodhead, 2013).
[Crossref]

P. Elliott, K. Burke, A. Lami, and F. Furche, Reviews in Computational Chemistry, 26 (John Wiley & Sons, 2009), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A graphical realization of structure of Q2SnCl2.
Fig. 2
Fig. 2 Theoretical and experimental configurations of Q2SnCl2.
Fig. 3
Fig. 3 Density of states of Q2SnCl2.
Fig. 4
Fig. 4 Some of the configurations of HOMOs and LUMOs of Q2SnCl2 optimized by DFT formalism.
Fig. 5
Fig. 5 Experimental absorption spectrum of Q2SnCl2 [15].
Fig. 6
Fig. 6 Theoretical absorption spectrum of Q2SnCl2 by the method of DFT compared with experiment; as the figure shows, DFT can estimate some overall features especially in small wave-lengths region.
Fig. 7
Fig. 7 Calculational absorption spectrum of Q2SnCl2 by the method of TDDFT compared with experiment; as seen from the figure, TDDFT can estimate peaks of absorption better than DFT and predicts an extra peak in larger wave-lengths region.
Fig. 8
Fig. 8 Absorption spectrum of Q2SnCl2, corrected by estimating SEMOs in calculation of energy of Coulombic interaction between the excited electron and the remaining hole.

Tables (4)

Tables Icon

Table 1 Bond lengths between species of the molecule Q2SnCl2.

Tables Icon

Table 2 Angles between species in the molecule Q2SnCl2.

Tables Icon

Table 3 Dihedral parameters of the molecule Q2SnCl2.

Tables Icon

Table 4 Energy (eV) and dipole moment ( d i f 2) of electronic transitions between states and their contribution percents, calculated by different approximation schemes (DFT=D, SEMO=S, TDDFT=T).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε ( ν ) = f , i N f i exp [ α ( ν ν f i ) 2 ]
V x c ( r , t ) E x c [ ρ ] ρ ( r ) | ρ ( r ) = ρ ( r , t ) .
χ i = a = 1 N c a i ϕ a
ψ Ground = ( 2 n ! ) 1 / 2 det { χ 1 o χ 1 o χ i o χ i o χ n o χ n o }
ψ Excited = ( 2 n ! ) 1 / 2 det { χ 1 o χ 1 o χ f o χ i o χ n o χ n o }
E Excited = E Ground + ε f u ε i o E C
E C = d r 1 d r 2 χ i o ( r 1 ) χ f u ( r 2 ) 1 r 12 [ χ i o ( r 2 ) χ f u ( r 1 ) χ i o ( r 2 ) χ f u ( r 1 ) ]
d i f = d r ψ Excited r ψ Ground = χ f u | r | χ i o

Metrics