Abstract

The effects of doping B2O3 on the defects and their induced anti-radiation performance change of the multicomponent phosphate glasses were studied in this work. The introduction of B2O3 reduces the connectivity of phosphate chains and thus increases the concentration of PO3-EC and PO4-EC defects in the phosphate glass network that have large absorption in the high-energy region. Meanwhile, B2O3 can improve the oxidizability of those glasses at the same melting temperature under which Fe2+ ions will be more easily oxidized to Fe3+ ions. However, the addition of B2O3 in terms of H3BO3, as it reaches up to 7.5 wt%, could enhance the gamma radiation resistance of the phosphate glasses, in this case B2O3, and enter the phosphate glass network in the form of B5O8 units. The units enhanced the connectivity of the long phosphate chains, and thus reduced the concentration of PO3-EC and PO4-EC defects in phosphate glasses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of doping SiO2 on the defect’s change in B2O3-containing phosphate based laser glasses used for high energy UV lasers

Mengya Sun, Zhanjun Duan, Pengfei Wang, Min Lu, and Bo Peng
Opt. Mater. Express 7(11) 4111-4122 (2017)

Natural healing behavior of gamma radiation induced defects in multicomponent phosphate glasses used for high energy UV lasers

Quanlong He, Yaoke Xue, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(9) 3284-3293 (2017)

Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3

Quanlong He, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(3) 1113-1121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
    [Crossref]
  2. D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses,” Glass Sci. Technol. 75(5), 243–253 (2002).
  3. P. Ebeling, D. Ehrt, and M. Friedrich, “Influence of modifier cations on the radiation-induced effects of metaphosphate glasses,” Glass Sci. Technol. 76(2), 56–61 (2003).
  4. U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174, 143–150 (2001).
    [Crossref]
  5. P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
    [Crossref] [PubMed]
  6. D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).
  7. P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
    [Crossref]
  8. D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
    [Crossref]
  9. M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
    [Crossref]
  10. K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
    [Crossref]
  11. H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
    [Crossref]
  12. Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3,” Opt. Mater. Express 7(3), 1113–1121 (2017).
    [Crossref]
  13. Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
    [Crossref]
  14. A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
    [Crossref]
  15. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263-264, 1–28 (2000).
    [Crossref]
  16. W. L. Konijnendijk and J. M. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Solids 20(2), 193–224 (1976).
    [Crossref]
  17. P. Rajbhandari, L. Montagne, and G. Tricot, “Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability,” Mater. Chem. Phys. 183, 542–550 (2016).
    [Crossref]
  18. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, 1978).
  19. P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).
  20. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses Invited,” Opt. Mater. Express 1(5), 845–855 (2011).
    [Crossref]
  21. G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
    [Crossref]

2017 (1)

2016 (2)

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Rajbhandari, L. Montagne, and G. Tricot, “Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability,” Mater. Chem. Phys. 183, 542–550 (2016).
[Crossref]

2015 (1)

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

2011 (2)

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses Invited,” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

2006 (2)

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

2003 (2)

P. Ebeling, D. Ehrt, and M. Friedrich, “Influence of modifier cations on the radiation-induced effects of metaphosphate glasses,” Glass Sci. Technol. 76(2), 56–61 (2003).

G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
[Crossref]

2002 (3)

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses,” Glass Sci. Technol. 75(5), 243–253 (2002).

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
[Crossref]

2001 (2)

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174, 143–150 (2001).
[Crossref]

2000 (2)

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263-264, 1–28 (2000).
[Crossref]

1998 (1)

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

1991 (1)

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

1976 (1)

W. L. Konijnendijk and J. M. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Solids 20(2), 193–224 (1976).
[Crossref]

Börjesson, L.

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

Bozdogan, O.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Brow, R. K.

Deo, M. N.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Ebeling, P.

P. Ebeling, D. Ehrt, and M. Friedrich, “Influence of modifier cations on the radiation-induced effects of metaphosphate glasses,” Glass Sci. Technol. 76(2), 56–61 (2003).

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Ehrt, D.

P. Ebeling, D. Ehrt, and M. Friedrich, “Influence of modifier cations on the radiation-induced effects of metaphosphate glasses,” Glass Sci. Technol. 76(2), 56–61 (2003).

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses,” Glass Sci. Technol. 75(5), 243–253 (2002).

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
[Crossref]

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174, 143–150 (2001).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Ertap, H.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Fletcher, L. B.

Friedrich, M.

P. Ebeling, D. Ehrt, and M. Friedrich, “Influence of modifier cations on the radiation-induced effects of metaphosphate glasses,” Glass Sci. Technol. 76(2), 56–61 (2003).

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Gao, F.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Goswami, M.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Guo, H.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Harada, T.

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

Hartmann, P.

G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
[Crossref]

He, Q.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3,” Opt. Mater. Express 7(3), 1113–1121 (2017).
[Crossref]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

Hoppe, U.

G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
[Crossref]

Hou, C.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Karabulut, M.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Konijnendijk, W. L.

W. L. Konijnendijk and J. M. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Solids 20(2), 193–224 (1976).
[Crossref]

Kothiyal, G. P.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Krol, D. M.

Kuwabara, M.

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

Lu, M.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3,” Opt. Mater. Express 7(3), 1113–1121 (2017).
[Crossref]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Mammadov, G. M.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Manikandan, S.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Matic, A.

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

Möncke, D.

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses,” Glass Sci. Technol. 75(5), 243–253 (2002).

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

Montagne, L.

P. Rajbhandari, L. Montagne, and G. Tricot, “Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability,” Mater. Chem. Phys. 183, 542–550 (2016).
[Crossref]

Natura, U.

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174, 143–150 (2001).
[Crossref]

Osellame, R.

Peng, B.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3,” Opt. Mater. Express 7(3), 1113–1121 (2017).
[Crossref]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Rajbhandari, P.

P. Rajbhandari, L. Montagne, and G. Tricot, “Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability,” Mater. Chem. Phys. 183, 542–550 (2016).
[Crossref]

Reis, S. T.

Sarkar, A.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Seeber, W.

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Shah, K. V.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Shrikhande, V. K.

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

Stevels, J. M.

W. L. Konijnendijk and J. M. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Solids 20(2), 193–224 (1976).
[Crossref]

Sun, M.

Takebe, H.

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

Tricot, G.

P. Rajbhandari, L. Montagne, and G. Tricot, “Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability,” Mater. Chem. Phys. 183, 542–550 (2016).
[Crossref]

Troy, N.

Vazquez, R. M.

Vogel, J.

G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
[Crossref]

Walter, G.

G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
[Crossref]

Wang, P.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3,” Opt. Mater. Express 7(3), 1113–1121 (2017).
[Crossref]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Witcher, J. J.

Xu, Y.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Yuce, B.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Zhou, Z.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Bull. Mater. Sci. (1)

K. V. Shah, M. Goswami, M. N. Deo, A. Sarkar, S. Manikandan, V. K. Shrikhande, and G. P. Kothiyal, “Effect of B2O3 addition on microhardness and structural features of 40Na2O-10BaO-xB2O3-(50-x)P2O5 glass system,” Bull. Mater. Sci. 29(1), 43–48 (2006).
[Crossref]

C. R. Chim. (1)

D. Ehrt, “UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range,” C. R. Chim. 5(11), 679–692 (2002).
[Crossref]

Glass Sci. Technol. (4)

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses,” Glass Sci. Technol. 75(5), 243–253 (2002).

P. Ebeling, D. Ehrt, and M. Friedrich, “Influence of modifier cations on the radiation-induced effects of metaphosphate glasses,” Glass Sci. Technol. 76(2), 56–61 (2003).

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

J. Alloys Compd. (1)

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

J. Non-Cryst. Solids (6)

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263-264, 1–28 (2000).
[Crossref]

W. L. Konijnendijk and J. M. Stevels, “The structure of borosilicate glasses studied by Raman scattering,” J. Non-Cryst. Solids 20(2), 193–224 (1976).
[Crossref]

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

G. Walter, J. Vogel, U. Hoppe, and P. Hartmann, “Structural study of magnesium polyphosphate glasses,” J. Non-Cryst. Solids 320(1–3), 210–222 (2003).
[Crossref]

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Mater. Chem. Phys. (1)

P. Rajbhandari, L. Montagne, and G. Tricot, “Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability,” Mater. Chem. Phys. 183, 542–550 (2016).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174, 143–150 (2001).
[Crossref]

Opt. Mater. (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Opt. Mater. Express (2)

Philos. Mag. B (1)

A. Matic and L. Börjesson, “Structure and dynamics of phosphate glasses,” Philos. Mag. B 77(2), 357–362 (1998).
[Crossref]

Sci. Rep. (1)

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Other (1)

C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transmission and absorption spectra of the series of phosphate based glasses with different H3BO3: SiO2 ratios (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively).
Fig. 2
Fig. 2 The absorption spectra of a series of phosphate based glasses with different H3BO3:SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively).
Fig. 3
Fig. 3 The Raman spectra of a series of phosphate based glasses with different H3BO3: SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively).
Fig. 4
Fig. 4 XPS spectra of a series of phosphate based glasses with different H3BO3: SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively).
Fig. 5
Fig. 5 Photographs of a series of phosphate based glasses with different H3BO3: SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively) at different radiation doses (20k, 100k, 250k, 500k and 1000k rad (Si)).
Fig. 6
Fig. 6 Transmission spectra of a series of phosphate based glasses with different H3BO3: SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively) at different radiation doses (20k, 100k, 250k, 500k and 1000k rad (Si)).
Fig. 7
Fig. 7 Absorption spectra of a series of glasses with different ratios of H3BO3 to SiO2 (0:2, 1.5:2, 4.5:2 and 7.5:2, respectively) at different radiation doses (250k, 500k and 1000k rad (Si)) with Gaussian peak fittings.
Fig. 8
Fig. 8 Schematic representations the changes of phosphate glasses network caused by alkali (R+), alkaline earth metal cations (R2+) and B2O3 as well as gamma irradiation (oxygen atoms (red), phosphorus atoms (pink), boron atoms (blue)).

Metrics