Abstract

InP is one of the most important materials for optoelectronics as a direct bandgap semiconductor, which can also be regarded as a low loss alternative plasmonic material for mid-infrared (mid-IR). The InP films studied in this work were grown by metal-organic vapor phase epitaxy (MOVPE). The effect of growth conditions on the optical and electrical properties of silicon doped InP (InP:Si) in the wavelength range from 3 to 40 µm was studied. The carrier concentration of up to 3.9 × 1019 cm−3 is achieved by optimizing the growth conditions. The dielectric function, effective mass of electrons and plasma frequency were determined by Fourier transform infrared spectroscopy (FTIR) for different carrier density levels. The plasma frequency can be tuned effectively via doping from 18.43 to 50.5 THz. Based on the experimental results, a semi-empirical formula for the plasma frequency, as a function of carrier concentration, is derived. Comparison to other semiconductors shows superior plasmonic performance of InP:Si in terms of propagation length and surface confinement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly doped InP as a low loss plasmonic material for mid-IR region

M. E. Aryaee Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko
Opt. Express 24(25) 29077-29088 (2016)

Degenerately doped InGaBiAs:Si as a highly conductive and transparent contact material in the infrared range

Y. Zhong, P. B. Dongmo, L. Gong, S. Law, B. Chase, D. Wasserman, and J. M. O. Zide
Opt. Mater. Express 3(8) 1197-1204 (2013)

Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
    [Crossref] [PubMed]
  4. M. R. Philpott, “Effect of surface plasmons on transitions in molecules,” J. Chem. Phys. 62(5), 1812–1817 (1975).
    [Crossref]
  5. S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
    [Crossref] [PubMed]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [Crossref]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  8. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  9. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  10. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
    [Crossref]
  11. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
    [Crossref]
  12. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
    [Crossref]
  13. K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
    [Crossref]
  14. K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in Proceedings of SPIE-The International Society for Optical Engineering (2008), 69090A.
    [Crossref]
  15. N. Grote, M. Baier, and F. Soares, “Photonic integrated circuits on InP,” Springer Ser. Opt. Sci. 161, 799–840 (2017).
    [Crossref]
  16. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
    [Crossref]
  17. S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid III-V/SOI resonant cavity enhanced photodetector,” Opt. Express 24(15), 16512–16519 (2016).
    [Crossref] [PubMed]
  18. G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
    [Crossref]
  19. S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31(11), 113005 (2016).
    [Crossref]
  20. M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
    [Crossref] [PubMed]
  21. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
    [Crossref] [PubMed]
  22. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  23. H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
    [Crossref]
  24. A. De and C. E. Pryor, “Optical dielectric functions of III-V semiconductors in wurtzite phase,” https://arxiv.org/abs/1011.3081 .
  25. A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb and InP,” Semicond. Sci. Technol. 16(11), 902–908 (2001).
    [Crossref]
  26. S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
    [Crossref]
  27. R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
    [Crossref] [PubMed]
  28. H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
    [Crossref]
  29. M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP single crystals,” Physica A 402, 216–223 (2014).
    [Crossref]
  30. Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
    [Crossref]
  31. W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
    [Crossref]
  32. P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
    [Crossref]
  33. C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
    [Crossref]
  34. A. R. Clawson, T. T. Vu, and D. I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP,” J. Cryst. Growth 83(2), 211–218 (1987).
    [Crossref]
  35. M. A. Di Forte-Poisson, C. Brylinski, and J. P. Duchemin, “Growth of ultrapure and Si-doped InP by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 46(5), 476–478 (1985).
    [Crossref]
  36. Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
    [Crossref]
  37. S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
    [Crossref]
  38. M. Oishi, S. Nojima, and H. Asahi, “Silicon doping in InP grown by metalorganic vapor phase epitaxy using silane,” Jpn. J. Appl. Phys., Part 2 24(5), L380–L382 (1985).
  39. E. Woelk and H. Beneking, “Doping of InP and GaInAs during organometallic vaporphase epitaxy using disilane,” J. Appl. Phys. 63(8), 2874–2876 (1988).
    [Crossref]
  40. A. R. Clawson and C. M. Hanson, “MOCVD grown Si-doped n+ InP layers for the subcollector region in HBTs,” in Proceedings of the Sixth International Conference on Indium Phosphide and Related Materials (1994), pp. 114–117.
    [Crossref]
  41. M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.
  42. W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
    [Crossref]
  43. C. J. Gabriel and A. Nedoluha, “Transmittance and Reflectance of Systems of Thin and Thick Layers,” Opt. Acta (Lond.) 18(6), 415–423 (1971).
    [Crossref]
  44. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, 1986).
  45. M. Cardona, “Temperature dependence of the refractive index and the polarizability of free carriers in some III-V semiconductors,” in Proceedings of the International Conference on Semiconductor Physics (1960), pp. 388–394.
  46. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  47. S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
    [Crossref]
  48. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  49. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]

2017 (1)

N. Grote, M. Baier, and F. Soares, “Photonic integrated circuits on InP,” Springer Ser. Opt. Sci. 161, 799–840 (2017).
[Crossref]

2016 (4)

S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid III-V/SOI resonant cavity enhanced photodetector,” Opt. Express 24(15), 16512–16519 (2016).
[Crossref] [PubMed]

S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31(11), 113005 (2016).
[Crossref]

M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
[Crossref] [PubMed]

S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
[Crossref] [PubMed]

2015 (4)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

2014 (4)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP single crystals,” Physica A 402, 216–223 (2014).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

2013 (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

2012 (2)

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

2011 (2)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

2010 (2)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2005 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

2001 (1)

A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb and InP,” Semicond. Sci. Technol. 16(11), 902–908 (2001).
[Crossref]

2000 (2)

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

1998 (1)

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

1993 (1)

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

1990 (1)

C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
[Crossref]

1988 (1)

E. Woelk and H. Beneking, “Doping of InP and GaInAs during organometallic vaporphase epitaxy using disilane,” J. Appl. Phys. 63(8), 2874–2876 (1988).
[Crossref]

1987 (2)

A. R. Clawson, T. T. Vu, and D. I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP,” J. Cryst. Growth 83(2), 211–218 (1987).
[Crossref]

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

1985 (3)

M. A. Di Forte-Poisson, C. Brylinski, and J. P. Duchemin, “Growth of ultrapure and Si-doped InP by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 46(5), 476–478 (1985).
[Crossref]

M. Oishi, S. Nojima, and H. Asahi, “Silicon doping in InP grown by metalorganic vapor phase epitaxy using silane,” Jpn. J. Appl. Phys., Part 2 24(5), L380–L382 (1985).

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

1982 (2)

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
[Crossref]

1980 (1)

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

1975 (1)

M. R. Philpott, “Effect of surface plasmons on transitions in molecules,” J. Chem. Phys. 62(5), 1812–1817 (1975).
[Crossref]

1971 (1)

C. J. Gabriel and A. Nedoluha, “Transmittance and Reflectance of Systems of Thin and Thick Layers,” Opt. Acta (Lond.) 18(6), 415–423 (1971).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Adachi, S.

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

Adams, D. C.

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Ali, H. A. M.

M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP single crystals,” Physica A 402, 216–223 (2014).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Anglin, K.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Aryaee Panah, M. E.

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

Asahi, H.

M. Oishi, S. Nojima, and H. Asahi, “Silicon doping in InP grown by metalorganic vapor phase epitaxy using silane,” Jpn. J. Appl. Phys., Part 2 24(5), L380–L382 (1985).

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Baier, M.

N. Grote, M. Baier, and F. Soares, “Photonic integrated circuits on InP,” Springer Ser. Opt. Sci. 161, 799–840 (2017).
[Crossref]

Bauch, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Beneking, H.

E. Woelk and H. Beneking, “Doping of InP and GaInAs during organometallic vaporphase epitaxy using disilane,” J. Appl. Phys. 63(8), 2874–2876 (1988).
[Crossref]

Berger, P. R.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Blaauw, C.

C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
[Crossref]

Boltasseva, A.

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Breiland, W. G.

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

Brylinski, C.

M. A. Di Forte-Poisson, C. Brylinski, and J. P. Duchemin, “Growth of ultrapure and Si-doped InP by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 46(5), 476–478 (1985).
[Crossref]

Burkhard, H.

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

Byrne, E.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Cao, C. F.

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

Chan, Y.

A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb and InP,” Semicond. Sci. Technol. 16(11), 902–908 (2001).
[Crossref]

Christensen, D. V.

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

Chu, S. N. G.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Chung, I.-S.

S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid III-V/SOI resonant cavity enhanced photodetector,” Opt. Express 24(15), 16512–16519 (2016).
[Crossref] [PubMed]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Clawson, A. R.

A. R. Clawson, T. T. Vu, and D. I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP,” J. Cryst. Growth 83(2), 211–218 (1987).
[Crossref]

A. R. Clawson and C. M. Hanson, “MOCVD grown Si-doped n+ InP layers for the subcollector region in HBTs,” in Proceedings of the Sixth International Conference on Indium Phosphide and Related Materials (1994), pp. 114–117.
[Crossref]

Coblentz, D.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Coltrin, M. E.

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

Creighton, J. R.

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Di Forte-Poisson, M. A.

M. A. Di Forte-Poisson, C. Brylinski, and J. P. Duchemin, “Growth of ultrapure and Si-doped InP by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 46(5), 476–478 (1985).
[Crossref]

Dinges, H. W.

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Djurišic, A. B.

A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb and InP,” Semicond. Sci. Technol. 16(11), 902–908 (2001).
[Crossref]

Dooley, S.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Dostalek, J.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Duchemin, J. P.

M. A. Di Forte-Poisson, C. Brylinski, and J. P. Duchemin, “Growth of ultrapure and Si-doped InP by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 46(5), 476–478 (1985).
[Crossref]

Dutta, N. K.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Elder, D. I.

A. R. Clawson, T. T. Vu, and D. I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP,” J. Cryst. Growth 83(2), 211–218 (1987).
[Crossref]

El-Nahass, M. M.

M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP single crystals,” Physica A 402, 216–223 (2014).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Frederic, D.

S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31(11), 113005 (2016).
[Crossref]

Gabriel, C. J.

C. J. Gabriel and A. Nedoluha, “Transmittance and Reflectance of Systems of Thin and Thick Layers,” Opt. Acta (Lond.) 18(6), 415–423 (1971).
[Crossref]

García de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Gatos, C. H.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Gatos, H. C.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Giesen, Ch.

Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
[Crossref]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Goodhue, W. D.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Grote, N.

N. Grote, M. Baier, and F. Soares, “Photonic integrated circuits on InP,” Springer Ser. Opt. Sci. 161, 799–840 (2017).
[Crossref]

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Ha, N. T.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Hamilton, T.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Hammar, M.

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

Han, L.

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

Hanson, C. M.

A. R. Clawson and C. M. Hanson, “MOCVD grown Si-doped n+ InP layers for the subcollector region in HBTs,” in Proceedings of the Sixth International Conference on Indium Phosphide and Related Materials (1994), pp. 114–117.
[Crossref]

He, X. K.

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

Heime, K.

Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
[Crossref]

Heuken, M.

Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
[Crossref]

Höhnsdorf, F.

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

Hou, H. Q.

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

Hovel, R.

Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
[Crossref]

Hua, Q. H.

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

Hufgard, E.

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Jastrzebski, L.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Jayasinghe, R. C.

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

Kelso, S. M.

S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
[Crossref]

Kudryavtsev, K. E.

Kuphal, E.

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

Lagowski, J.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Lao, Y. F.

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

Lavrinenko, A. V.

M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
[Crossref] [PubMed]

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

Law, S.

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Learkthanakhachon, S.

Lee, J.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Leu, S.

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

Li, E. H.

A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb and InP,” Semicond. Sci. Technol. 16(11), 902–908 (2001).
[Crossref]

Li, G. P.

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

Lichtensteiger, M.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Liu, R.

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

Logan, R. A.

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

Lv, R.

S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
[Crossref] [PubMed]

Malagari, S. D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Markus-Christian, A.

S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31(11), 113005 (2016).
[Crossref]

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Miner, C. J.

C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
[Crossref]

Moffat, H. K.

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

Mørk, J.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Morozov, S. V.

Nahory, R. E.

S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Nedoluha, A.

C. J. Gabriel and A. Nedoluha, “Transmittance and Reflectance of Systems of Thin and Thick Layers,” Opt. Acta (Lond.) 18(6), 415–423 (1971).
[Crossref]

Ng, G. I.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
[Crossref]

Nojima, S.

M. Oishi, S. Nojima, and H. Asahi, “Silicon doping in InP grown by metalorganic vapor phase epitaxy using silane,” Jpn. J. Appl. Phys., Part 2 24(5), L380–L382 (1985).

Oishi, M.

M. Oishi, S. Nojima, and H. Asahi, “Silicon doping in InP grown by metalorganic vapor phase epitaxy using silane,” Jpn. J. Appl. Phys., Part 2 24(5), L380–L382 (1985).

Panah, M. E.

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Park, G. C.

S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid III-V/SOI resonant cavity enhanced photodetector,” Opt. Express 24(15), 16512–16519 (2016).
[Crossref] [PubMed]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Perera, A. G. U.

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

Philpott, M. R.

M. R. Philpott, “Effect of surface plasmons on transitions in molecules,” J. Chem. Phys. 62(5), 1812–1817 (1975).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Pollack, M. A.

S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Protzmann, H.

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Pryds, N.

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

Qian, X.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Radahakrishnan, K.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
[Crossref]

Rava, P.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Ribaudo, T.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Semenova, E.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Semenova, E. S.

M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
[Crossref] [PubMed]

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Shepherd, F. R.

C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
[Crossref]

Shuang, S.

S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
[Crossref] [PubMed]

Soares, F.

N. Grote, M. Baier, and F. Soares, “Photonic integrated circuits on InP,” Springer Ser. Opt. Sci. 161, 799–840 (2017).
[Crossref]

Springthorpe, A. J.

C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
[Crossref]

Steinkirchner, J.

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

Stephan, S.

S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31(11), 113005 (2016).
[Crossref]

Stolz, W.

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sun, T. N.

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Taghizadeh, A.

S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid III-V/SOI resonant cavity enhanced photodetector,” Opt. Express 24(15), 16512–16519 (2016).
[Crossref] [PubMed]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Takayama, O.

Taylor, A. M.

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Toma, K.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Toma, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Tsao, J. Y.

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

Van Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Van Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Vu, T. T.

A. R. Clawson, T. T. Vu, and D. I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP,” J. Cryst. Growth 83(2), 211–218 (1987).
[Crossref]

Walukiewicz, W.

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

Wang, Q.

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Wasserman, D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

Woelk, E.

E. Woelk and H. Beneking, “Doping of InP and GaInAs during organometallic vaporphase epitaxy using disilane,” J. Appl. Phys. 63(8), 2874–2876 (1988).
[Crossref]

Wu, H. Z.

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

Xie, Z.

S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
[Crossref] [PubMed]

Xu, X. G.

Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
[Crossref]

Xue, W.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Yoon, S. F.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
[Crossref]

Youssef, S. B.

M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP single crystals,” Physica A 402, 216–223 (2014).
[Crossref]

Yvind, K.

S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid III-V/SOI resonant cavity enhanced photodetector,” Opt. Express 24(15), 16512–16519 (2016).
[Crossref] [PubMed]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Zhang, Q.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Zhang, Z.

S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
[Crossref] [PubMed]

Zheng, H. Q.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
[Crossref]

Zhong, Y.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. A. Di Forte-Poisson, C. Brylinski, and J. P. Duchemin, “Growth of ultrapure and Si-doped InP by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 46(5), 476–478 (1985).
[Crossref]

J. Appl. Phys. (7)

W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, “Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio,” J. Appl. Phys. 51(5), 2659–2668 (1980).
[Crossref]

E. Woelk and H. Beneking, “Doping of InP and GaInAs during organometallic vaporphase epitaxy using disilane,” J. Appl. Phys. 63(8), 2874–2876 (1988).
[Crossref]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[Crossref]

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs, and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys. 87(11), 7988–7993 (2000).
[Crossref]

P. R. Berger, S. N. G. Chu, R. A. Logan, E. Byrne, D. Coblentz, J. Lee, N. T. Ha, and N. K. Dutta, “Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 73(8), 4095–4097 (1993).
[Crossref]

J. Chem. Phys. (1)

M. R. Philpott, “Effect of surface plasmons on transitions in molecules,” J. Chem. Phys. 62(5), 1812–1817 (1975).
[Crossref]

J. Cryst. Growth (2)

A. R. Clawson, T. T. Vu, and D. I. Elder, “A comparison of IV and VI n-dopants for MOVPE-grown InP,” J. Cryst. Growth 83(2), 211–218 (1987).
[Crossref]

S. Leu, H. Protzmann, F. Höhnsdorf, W. Stolz, J. Steinkirchner, and E. Hufgard, “Si-doping of MOVPE grown InP and GaAs by using the liquid Si source ditertiarybutyl silane,” J. Cryst. Growth 195(1–4), 91–97 (1998).
[Crossref]

J. Electron. Mater. (1)

C. Blaauw, F. R. Shepherd, C. J. Miner, and A. J. Springthorpe, “Silicon incorporation in InP during LP-MOCVD using disilane,” J. Electron. Mater. 19(1), 1–6 (1990).
[Crossref]

J. Nanophotonics (1)

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

R. C. Jayasinghe, Y. F. Lao, A. G. U. Perera, M. Hammar, C. F. Cao, and H. Z. Wu, “Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films,” J. Phys. Condens. Matter 24(43), 435803 (2012).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

Jpn. J. Appl. Phys., Part 2 (1)

M. Oishi, S. Nojima, and H. Asahi, “Silicon doping in InP grown by metalorganic vapor phase epitaxy using silane,” Jpn. J. Appl. Phys., Part 2 24(5), L380–L382 (1985).

Laser Photonics Rev. (1)

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photonics Rev. 9(3), L11–L15 (2015).
[Crossref]

Mater. Lett. (1)

Q. H. Hua, G. P. Li, X. K. He, Q. Wang, and T. N. Sun, “Infrared reflectance study of n-type InP grown by the LEC method,” Mater. Lett. 3(3), 93–97 (1985).
[Crossref]

Mater. Sci. Eng. (1)

W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, “Organometallic vapor phase epitaxy (OMVPE),” Mater. Sci. Eng. 24(6), 241–274 (1999).
[Crossref]

MRS Bull. (1)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Opt. Acta (Lond.) (1)

C. J. Gabriel and A. Nedoluha, “Transmittance and Reflectance of Systems of Thin and Thick Layers,” Opt. Acta (Lond.) 18(6), 415–423 (1971).
[Crossref]

Opt. Express (3)

Phys. Rev. B (3)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, “Optical properties of In1-xGaxAsyP1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry,” Phys. Rev. B 26(12), 6669–6681 (1982).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Physica A (1)

M. M. El-Nahass, S. B. Youssef, and H. A. M. Ali, “Optical properties of sulfur doped InP single crystals,” Physica A 402, 216–223 (2014).
[Crossref]

Plasmonics (1)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Shuang, R. Lv, Z. Xie, and Z. Zhang, “Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays,” Sci. Rep. 6(1), 26670 (2016).
[Crossref] [PubMed]

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

S. Stephan, D. Frederic, and A. Markus-Christian, “Novel InP- and GaSb-based light sources for the near to far infrared,” Semicond. Sci. Technol. 31(11), 113005 (2016).
[Crossref]

A. B. Djurišić, Y. Chan, and E. H. Li, “The model dielectric function: application to GaSb and InP,” Semicond. Sci. Technol. 16(11), 902–908 (2001).
[Crossref]

Springer Ser. Opt. Sci. (1)

N. Grote, M. Baier, and F. Soares, “Photonic integrated circuits on InP,” Springer Ser. Opt. Sci. 161, 799–840 (2017).
[Crossref]

Other (8)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in Proceedings of SPIE-The International Society for Optical Engineering (2008), 69090A.
[Crossref]

A. De and C. E. Pryor, “Optical dielectric functions of III-V semiconductors in wurtzite phase,” https://arxiv.org/abs/1011.3081 .

A. R. Clawson and C. M. Hanson, “MOCVD grown Si-doped n+ InP layers for the subcollector region in HBTs,” in Proceedings of the Sixth International Conference on Indium Phosphide and Related Materials (1994), pp. 114–117.
[Crossref]

M. E. Aryaee Panah, L. Han, D. V. Christensen, N. Pryds, A. V. Lavrinenko, and E. S. Semenova, “Silicon doped InP as an alternative plasmonic material for mid-infrared,” in Proceedings of the 41st International Conference on Infrared, Millimeter and Terahertz Waves (2016), 7758994.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, 1986).

M. Cardona, “Temperature dependence of the refractive index and the polarizability of free carriers in some III-V semiconductors,” in Proceedings of the International Conference on Semiconductor Physics (1960), pp. 388–394.

Ch. Giesen, X. G. Xu, R. Hovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine,” in Proceedings of the International Conference on Indium Phosphide and Related Materials (1997), pp. 47–50.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Carrier concentration versus Si2H6/TMIn molar ratio for two different V/III molar ratios, together with the TOF-SIMS measurement results.
Fig. 2
Fig. 2 Differential interference contrast (DIC) optical microscope image of the deteriorated surface of a sample with Si2H6/TMIn molar ratio equal to 15.27 × 10−5.
Fig. 3
Fig. 3 Measured and fitted reflectance spectra of the bare InP:Fe substrate.
Fig. 4
Fig. 4 Measured and fitted reflectance spectra of the grown samples.
Fig. 5
Fig. 5 Real and imaginary parts of the permittivities, from Table 2.
Fig. 6
Fig. 6 ω p versus carrier concentration from Hall and TOF-SIMS measurements together with the empirical and theoretical values.
Fig. 7
Fig. 7 Effective mass of electrons in InP:Si as a function of the carrier concentration.
Fig. 8
Fig. 8 (a) Propagation length, L p , (b) localization, δ spp , (c) figure of merit, L p / δ spp and (d) figure of merit Re ( ε ) 2 /Im( ε ) , for sample 9 ( λ p =5.93 µm) in comparison with other doped semiconductors: n- ( λ p =5.54 µm) and p-doped Si ( λ p =5.90 µm) [46], n-InSb ( λ p =6.84 µm) [47], and n-InAs with λ p =6.3 µm [48].

Tables (2)

Tables Icon

Table 1 Growth parameters and the electrical properties of the samples

Tables Icon

Table 2 Fitted parameters of the D-L dielectric function

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Si 2 H 6 SiH 2 + SiH 4
SiH 4 SiH 2 + H 2
PH 3 + SiH 2 SiH 3 PH 2
F TMIn = α F hydrogen p TMIn ( p bubbler total p TMIn )
ε( ω )= ε ( 1 ω p 2 ω 2 +iωγ )+ j S j ω f,j 2 ω f,j 2 ω 2 iω Γ j
ω p = n e 2 ε ε 0 m *
ω p = An( 1 B 1.344C n 1 3 )
L p = ( 2Im[ k spp ] ) 1
δ d/m =Re[ ( 2π k spp 2 ε d/m k 0 2 ) 1 ]
FOM 1 = L p / δ spp
FOM 2 =Re ( ε ) 2 /Im( ε )

Metrics