Abstract

We demonstrated ITO-free flexible inverted polymer solar cells based on multilayer transparent top electrodes with the structures of MoO3/Au/Ag/NPB (N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'diamine). An ultrathin Ag film was prepared in the MoO3/Au/Ag/NPB electrode with MoO3 as the wetting layer and Au as the seed layer. By regulating the thickness of NPB anti-reflection layers, the transmittance of the MAN structure could be improved in the wavelength range of 430–800 nm. Considering the thermal compatibility of flexible substrate, the thermal evaporation-based 2,2’,2”-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H- benzemidazole) (TPBi) layer was used to replace high temperature solution-processed metal oxides as the interlayer to modify the effective work function of the Ag cathode. The optimized flexible inverted polymer solar cell with a MoO3/Au/Ag/NPB top electrode showed high power conversion efficiency (PCE) of 6.02%, which was comparable with the ITO-based plate equivalent. Moreover, the inverted flexible polymer solar cells exhibited good flexibility and mechanical stability.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode

Fangyuan Jiang, Tongfa Liu, Sheng Zeng, Qing Zhao, Xue Min, Zaifang Li, Jinhui Tong, Wei Meng, Sixing Xiong, and Yinhua Zhou
Opt. Express 23(3) A83-A91 (2015)

Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode

Hyeunseok Cheun, Jungbae Kim, Yinhua Zhou, Yunnan Fang, Amir Dindar, Jaewon Shim, Canek Fuentes-Hernandez, Kenneth H. Sandhage, and Bernard Kippelen
Opt. Express 18(S4) A506-A512 (2010)

Enhanced performances in inverted small molecule solar cells by Ag nanoparticles

Fangming Jin, Bei Chu, Wenlian Li, Zisheng Su, Haifeng Zhao, and C. S. Lee
Opt. Express 22(S7) A1669-A1679 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009).
    [Crossref]
  2. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
    [Crossref]
  3. F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
    [Crossref]
  4. M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).
  5. S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
    [Crossref] [PubMed]
  6. Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
    [PubMed]
  7. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
    [Crossref] [PubMed]
  8. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
    [Crossref]
  9. J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
    [Crossref]
  10. Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
    [Crossref]
  11. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
    [Crossref]
  12. G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
    [Crossref]
  13. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
    [Crossref] [PubMed]
  14. H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
    [Crossref]
  15. C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
    [Crossref]
  16. R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
    [Crossref]
  17. R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
    [Crossref]
  18. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
    [Crossref] [PubMed]
  19. L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
    [Crossref]
  20. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
    [Crossref]
  21. H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
    [Crossref] [PubMed]

2017 (2)

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
[Crossref]

2015 (1)

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

2013 (1)

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

2012 (1)

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

2011 (3)

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

2009 (3)

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009).
[Crossref]

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

2008 (3)

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

2007 (1)

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

2005 (3)

L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
[Crossref]

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

2002 (1)

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

2001 (1)

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Al-Ibrahim, M.

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

Alstrup, J.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009).
[Crossref]

Bai, Y.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Blom, P. W. M.

L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
[Crossref]

Brabec, C. J.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Bradley, D. D. C.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Cai, F.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Cao, Y.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Chen, L.

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Chen, L. M.

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

Chen, Q.-D.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Chen, S.-A.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Chen, W.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Cheng, G.

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

Cheng, Y.-S.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Cravino, A.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Demello, J. C.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Du, X.-B.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Feng, J.

R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
[Crossref]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

Fromherz, T.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Fyenbo, J.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Gao, B.-R.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Gao, W. B.

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

Gevorgyan, S. A.

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009).
[Crossref]

Gobsch, G.

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

Guo, T.-F.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Hagemann, O.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

He, Z.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Heeger, A. J.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Hsu, Y.-J.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Huang, J.-C.-A.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Huang, X.

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Hummelen, J. C.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Jhuo, H.-J.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Jin, Y.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Jo, J.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Jorgensen, M.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Kim, D. Y.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Kim, J. S.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Kim, S. S.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Kirchartz, T.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Koster, L. J. A.

L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
[Crossref]

Krebs, F. C.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009).
[Crossref]

Kristensen, J.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Larsen, K.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Lee, K.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Lee, T.-H.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Lee, Y.-H.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Leem, D.-S.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Li, C.-Y.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Li, F.

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Li, J.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Li, Y.-L.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Liang, Y.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Liao, H. H.

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

Liao, S.-H.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Lidzey, D. G.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Lin, Y.-C.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Liu, M. J.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Liu, S. Y.

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

Liu, Y.-F.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Ma, R.

R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
[Crossref]

Meissner, D.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Meng, Y. L.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Mihailetchi, V. D.

L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
[Crossref]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Murphy, C.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Na, S. I.

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Nelson, J.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Nguyen, T. Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Nielsen, T. D.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Norrman, K.

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Qin, F.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Ray, C.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Rispens, M. T.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Roth, H. K.

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

Sanchez, L.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Sariciftci, N. S.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Sensfuss, S.

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

Sharma, S.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Shrotriya, V.

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Simonen, J.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Song, J.-F.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Spencer, S.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Su, S.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Sun, H.-B.

R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
[Crossref]

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Tao, C.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Tsai, S.-T.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Wang, H.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Wang, H.-Y.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Wang, L.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Wang, T.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Wen, T.-C.

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Wong, W. Y.

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Wu, F. M.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Wu, H.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Wu, Y.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Xia, J.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Xia, R.

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Xie, G. H.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Xie, H.

L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
[Crossref]

Xie, W. F.

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

Xiong, C.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Xu, Z.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

Xue, Q.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Yan, Y.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Yang, L.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Yang, Y.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Yang, Z.-Y.

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Yao, Y.

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Yeh, P.-N.

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Yin, D.

R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
[Crossref]

Yu, L.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Zhang, D. D.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Zhang, Y.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Zhao, Y.

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

Zhokhavets, U.

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

Zhong, C.

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

Zhou, Y.

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Zi, J.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

Adv. Energy Mater. (1)

R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Adv. Energy Mater. 3(6), 718–723 (2013).
[Crossref]

Adv. Funct. Mater. (1)

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Adv. Mater. (4)

Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. 23(40), 4636–4643 (2011).
[Crossref] [PubMed]

S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20(21), 4061–4067 (2008).
[Crossref]

Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, and T. Wang, “Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer,” Adv. Mater. 29(1), 1604044 (2017).
[PubMed]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. Feng, F. Li, W. B. Gao, G. Cheng, W. F. Xie, and S. Y. Liu, “Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices,” Appl. Phys. Lett. 81(16), 2935–2937 (2002).
[Crossref]

G. H. Xie, Y. L. Meng, F. M. Wu, C. Tao, D. D. Zhang, M. J. Liu, Q. Xue, W. Chen, and Y. Zhao, “Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO(x) p-doping layer,” Appl. Phys. Lett. 92(9), 093305 (2008).
[Crossref]

H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs(2)CO(3) interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Appl. Phys. Lett. 87(20), 203502 (2005).
[Crossref]

J. Appl. Phys. (1)

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

J. Mater. Chem. (2)

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009).
[Crossref]

C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, and Y.-J. Hsu, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers,” J. Mater. Chem. 19(11), 1643–1647 (2009).
[Crossref]

Nanoscale (1)

H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale 3(5), 2280–2285 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Org. Electron. (2)

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12(11), 1927–1935 (2011).
[Crossref]

R. Ma, J. Feng, D. Yin, and H.-B. Sun, “Highly efficient and mechanically robust stretchable polymer solar cells with random buckling,” Org. Electron. 43, 77–81 (2017).
[Crossref]

Sci. Rep. (1)

S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer,” Sci. Rep. 4(1), 6813 (2015).
[Crossref] [PubMed]

Science (1)

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene,” Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The transmittance spectra of the MAN electrode with 0, 20, 30, 40, 50 nm NPB coatings.
Fig. 2
Fig. 2 (a) The device structure of the flexible inverted PCDTBT: PC71BM solar cell. (b) Energy level diagram of the inverted FPSCs.
Fig. 3
Fig. 3 (a) J – V characteristics of flexible inverted polymer solar cells with 30, 40, 50 nm TPBi interlayers and 40 nm NPB coating layer, and the device with 30 nm TPBi interlayer and without NPB coating layer was used as control device to verify the function of 40 nm NPB coating; (b) The UV-visible absorption and IPCE spectras of inverted PCDTBT: PC71BM solar cells.
Fig. 4
Fig. 4 ISC (a), VOC (b), PCE (c) and FF (d) of the inverted FPSCs as a function of bending cycles. The inset shows the photograph of the inverted FPSCs after bending.

Tables (1)

Tables Icon

Table 1 The photovoltaic parameters of the inverted FPSCs with different thicknesses of TPBi interlayers.

Metrics