Abstract

Patterning on glass substrates has been a promising technology for many applications, but it is difficult to make a high contrast pattern without chemical pollution. Glass substrates are basically transparent to 1064 nm laser irradiation and cannot be patterned directly by a 1064 nm pulsed laser. In this article, we report a new technique for laser patterning on glass substrates without damage. This technique has several advantages such as high contrast, high durability and low cost without rigorous experiment environment. By contacting the glass substrate with a graphite plate and using 1064 nm laser to irradiate at the interface, patterning is formed on the rear glass substrate. This method is based on the heating of graphite plate by laser. The confinement of glass substrates and strong absorption of graphite for an incident laser radiation provide the ambient of high local pressure and temperature, which make the graphite particles bond to the surface of glass, thus the purpose of making black color patterning of glass substrates can be achieved. Furthermore, various intricate patterns can be patterned on glass substrates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices

Malalahalli S. Giridhar, Kibyung Seong, Axel Schülzgen, Pramod Khulbe, Nasser Peyghambarian, and Masud Mansuripur
Appl. Opt. 43(23) 4584-4589 (2004)

Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings

Yingjie Chai, Meiping Zhu, Zhengyuan Bai, Kui Yi, Hu Wang, Yun Cui, and Jianda Shao
Opt. Lett. 40(7) 1330-1333 (2015)

Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train

Koji Sugioka, Makoto Iida, Hiroshi Takai, and Katsumi Micorikawa
Opt. Lett. 36(14) 2734-2736 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
    [Crossref]
  2. Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
    [Crossref]
  3. B. E. Parker, “Method and apparatus for marking an egg with an advertisement and a freshness data, ” US, US20070229649(2007).
  4. J. Qi, K. L. Wang, and Y. M. Zhu, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1–3), 273–276 (2003).
    [Crossref]
  5. H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
    [Crossref]
  6. J. Pepi, Strength Properties of Glass and Ceramics (SPIE, 2014).
  7. C. A. Harper, Handbook of Ceramics, Glasses, and Diamonds (McGraw-Hill, 2001).
  8. Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
    [Crossref]
  9. H. Mackel and P. P. Altermatt, “Current transport through lead–borosilicate interfacial glass layers at the screen–printed silver-silicon front contact,” Photovoltaics 5(4), 1034–1046 (2015).
    [Crossref]
  10. Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
    [Crossref]
  11. S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
    [Crossref]
  12. M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
    [Crossref]
  13. Y. B. Vasudeo, “UV and electron beam technology for printing and packaging applications,” Popular Plastics and Packaging 59(5), 26–29 (2014).
  14. M. Z. Xin, Q. M. Jing, and F. D. Yun, “Analysis of marking glass with different process parameters based on super-pulsed laser,” Adv. Mat. Res. 602(1), 929–933 (2012).
  15. K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
    [Crossref]
  16. M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
    [Crossref]
  17. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
    [Crossref] [PubMed]
  18. M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
    [Crossref]
  19. H. Sakata, S. Chakraborty, and M. Wakaki, “Patterning of Bi2O3, films using laser-induced forward and backward transfer techniques,” Microelectron. Eng. 96(96), 56–60 (2012).
    [Crossref]
  20. A. S. Fialkov, Carbon Interlayer Compounds and Compositions Thereof (Moscow Press, 1997).
  21. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
    [Crossref]
  22. R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films 519(9), 2907–2913 (2011).
    [Crossref]
  23. S. M. Metev and V. P. Veiko, Laser-Assisted Micro Technology (Springer, 1994).
  24. L. Jian, X. Ni, and A. He, Physics of the interaction for laser and materials (China Machine Press, 1996).
  25. R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
    [Crossref]
  26. H. C. Ong and R. P. H. Chang, “Effect of laser intensity on the properties of carbon plasmas and deposited films,” Phys. Rev. B 55(19), 13213–13220 (1997).
    [Crossref]
  27. A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review,” Surf. Coat. Tech. 82(3), 199–213 (1996).
    [Crossref]
  28. I. Miyamoto, Y. Okamoto, R. Tanabe, Y. Ito, K. Cvecek, and M. Schmidt, “Mechanism of dynamic plasma motion in internal modification of glass by fs-laser pulses at high pulse repetition rate,” Opt. Express 24(22), 25718–25731 (2016).
    [Crossref] [PubMed]

2017 (1)

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

2016 (2)

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

I. Miyamoto, Y. Okamoto, R. Tanabe, Y. Ito, K. Cvecek, and M. Schmidt, “Mechanism of dynamic plasma motion in internal modification of glass by fs-laser pulses at high pulse repetition rate,” Opt. Express 24(22), 25718–25731 (2016).
[Crossref] [PubMed]

2015 (2)

H. Mackel and P. P. Altermatt, “Current transport through lead–borosilicate interfacial glass layers at the screen–printed silver-silicon front contact,” Photovoltaics 5(4), 1034–1046 (2015).
[Crossref]

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

2014 (2)

Y. B. Vasudeo, “UV and electron beam technology for printing and packaging applications,” Popular Plastics and Packaging 59(5), 26–29 (2014).

Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
[Crossref]

2013 (1)

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

2012 (3)

M. Z. Xin, Q. M. Jing, and F. D. Yun, “Analysis of marking glass with different process parameters based on super-pulsed laser,” Adv. Mat. Res. 602(1), 929–933 (2012).

P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
[Crossref]

H. Sakata, S. Chakraborty, and M. Wakaki, “Patterning of Bi2O3, films using laser-induced forward and backward transfer techniques,” Microelectron. Eng. 96(96), 56–60 (2012).
[Crossref]

2011 (1)

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films 519(9), 2907–2913 (2011).
[Crossref]

2009 (2)

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

2008 (1)

Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
[Crossref]

2004 (1)

Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
[Crossref]

2003 (1)

J. Qi, K. L. Wang, and Y. M. Zhu, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1–3), 273–276 (2003).
[Crossref]

2002 (1)

H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
[Crossref]

1997 (1)

H. C. Ong and R. P. H. Chang, “Effect of laser intensity on the properties of carbon plasmas and deposited films,” Phys. Rev. B 55(19), 13213–13220 (1997).
[Crossref]

1996 (1)

A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review,” Surf. Coat. Tech. 82(3), 199–213 (1996).
[Crossref]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

1985 (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Afroj, S.

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

Altermatt, P. P.

H. Mackel and P. P. Altermatt, “Current transport through lead–borosilicate interfacial glass layers at the screen–printed silver-silicon front contact,” Photovoltaics 5(4), 1034–1046 (2015).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Bartsch, J.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Breaban, F.

P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
[Crossref]

Carr, C.

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

Chakraborty, S.

H. Sakata, S. Chakraborty, and M. Wakaki, “Patterning of Bi2O3, films using laser-induced forward and backward transfer techniques,” Microelectron. Eng. 96(96), 56–60 (2012).
[Crossref]

Chang, R. P. H.

H. C. Ong and R. P. H. Chang, “Effect of laser intensity on the properties of carbon plasmas and deposited films,” Phys. Rev. B 55(19), 13213–13220 (1997).
[Crossref]

Chen, M.-F.

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

Chen, Y.-P.

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

Chengb, C.-L.

Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
[Crossref]

Chichkov, B. N.

Chiua, Y.-S.

Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
[Crossref]

Coutouly, J.-F.

P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
[Crossref]

Cvecek, K.

Deprez, P.

P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
[Crossref]

Deront, E.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Devaux, P.

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Do, T. B. M.

Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
[Crossref]

Donley, M. S.

A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review,” Surf. Coat. Tech. 82(3), 199–213 (1996).
[Crossref]

Dumont, Th.

Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
[Crossref]

Eason, R. W.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Fabbro, R.

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Feinaeugle, M.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Filipovic, A.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Glatthaar, M.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Gnatyukd, V. A.

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Goede, M.

H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
[Crossref]

Gregorcic, P.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Haferkamp, H.

H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
[Crossref]

Heath, D. J.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Hong, M. H.

Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
[Crossref]

Hsiao, W.-T.

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

Hu, C.-W.

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

Huang, W.-L.

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

Huang, Z. Q.

Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
[Crossref]

Ito, Y.

Jäschke, P.

H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
[Crossref]

Jib, G.-Y.

Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
[Crossref]

Jing, Q. M.

M. Z. Xin, Q. M. Jing, and F. D. Yun, “Analysis of marking glass with different process parameters based on super-pulsed laser,” Adv. Mat. Res. 602(1), 929–933 (2012).

Johs, B. D.

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films 519(9), 2907–2913 (2011).
[Crossref]

Kalio, A.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Kanevc, K.

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Karim, M. N.

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

Koch, J.

Kraft, A.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Kuznetsov, A. I.

Leyvraz, P.

Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
[Crossref]

Lin, Q. Y.

Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
[Crossref]

Lippert, T.

Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
[Crossref]

Mackel, H.

H. Mackel and P. P. Altermatt, “Current transport through lead–borosilicate interfacial glass layers at the screen–printed silver-silicon front contact,” Photovoltaics 5(4), 1034–1046 (2015).
[Crossref]

Martin, A. C.

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films 519(9), 2907–2913 (2011).
[Crossref]

Melian, C. F.

P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
[Crossref]

Mills, B.

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Miyamoto, I.

Mizeikisc, V.

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Okamoto, Y.

Olweya, S.

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Ong, H. C.

H. C. Ong and R. P. H. Chang, “Effect of laser intensity on the properties of carbon plasmas and deposited films,” Phys. Rev. B 55(19), 13213–13220 (1997).
[Crossref]

Poperenkoa, L. V.

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Qi, J.

J. Qi, K. L. Wang, and Y. M. Zhu, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1–3), 273–276 (2003).
[Crossref]

Rigout, M.

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

Rubin, M.

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Sakata, H.

H. Sakata, S. Chakraborty, and M. Wakaki, “Patterning of Bi2O3, films using laser-induced forward and backward transfer techniques,” Microelectron. Eng. 96(96), 56–60 (2012).
[Crossref]

Schmidt, M.

Stein, J.

H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
[Crossref]

Synowicki, R. A.

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films 519(9), 2907–2913 (2011).
[Crossref]

Tanabe, R.

Vasudeo, Y. B.

Y. B. Vasudeo, “UV and electron beam technology for printing and packaging applications,” Popular Plastics and Packaging 59(5), 26–29 (2014).

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Voevodin, A. A.

A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review,” Surf. Coat. Tech. 82(3), 199–213 (1996).
[Crossref]

Wakaki, M.

H. Sakata, S. Chakraborty, and M. Wakaki, “Patterning of Bi2O3, films using laser-induced forward and backward transfer techniques,” Microelectron. Eng. 96(96), 56–60 (2012).
[Crossref]

Wang, K. L.

J. Qi, K. L. Wang, and Y. M. Zhu, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1–3), 273–276 (2003).
[Crossref]

Whanga, T.-J.

Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
[Crossref]

Wokaun, A.

Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
[Crossref]

Xin, M. Z.

M. Z. Xin, Q. M. Jing, and F. D. Yun, “Analysis of marking glass with different process parameters based on super-pulsed laser,” Adv. Mat. Res. 602(1), 929–933 (2012).

Yeates, S. G.

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

Yun, F. D.

M. Z. Xin, Q. M. Jing, and F. D. Yun, “Analysis of marking glass with different process parameters based on super-pulsed laser,” Adv. Mat. Res. 602(1), 929–933 (2012).

Zelenskaab, K. S.

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Zelenskya, S. E.

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Zhu, Y. M.

J. Qi, K. L. Wang, and Y. M. Zhu, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1–3), 273–276 (2003).
[Crossref]

Adv. Mat. Res. (1)

M. Z. Xin, Q. M. Jing, and F. D. Yun, “Analysis of marking glass with different process parameters based on super-pulsed laser,” Adv. Mat. Res. 602(1), 929–933 (2012).

Appl. Phys., A Mater. Sci. Process. (1)

Z. Q. Huang, M. H. Hong, T. B. M. Do, and Q. Y. Lin, “Laser etching of glass substrates by 1064 nm laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 159–163 (2008).
[Crossref]

Appl. Surf. Sci. (1)

M. Feinaeugle, P. Gregorčič, D. J. Heath, B. Mills, and R. W. Eason, “Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films,” Appl. Surf. Sci. 396, 1231–1238 (2017).
[Crossref]

Energy Procedia (1)

S. Olweya, A. Kalio, A. Kraft, E. Deront, A. Filipovic, J. Bartsch, and M. Glatthaar, “Fine-line silver pastes for seed layer screen printing with varied glass Content,” Energy Procedia 43(43), 37–43 (2013).
[Crossref]

Infrared Phys. (1)

H. Haferkamp, P. Jäschke, J. Stein, and M. Goede, “Decoding of invisible laser markings using infrared technology,” Infrared Phys. 43(3–5), 171–174 (2002).
[Crossref]

J. Appl. Phys. (1)

R. Fabbro, J. Fournier, P. Ballard, P. Devaux, and J. Virmont, “Physical study of laser produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

J. Mater. Process. Technol. (2)

J. Qi, K. L. Wang, and Y. M. Zhu, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1–3), 273–276 (2003).
[Crossref]

M.-F. Chen, W.-T. Hsiao, W.-L. Huang, C.-W. Hu, and Y.-P. Chen, “Laser coding on the eggshell using pulsed-laser marking system,” J. Mater. Process. Technol. 209(2), 737–744 (2009).
[Crossref]

J. Mater. Sci. (1)

M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, “Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics,” J. Mater. Sci. 50(13), 4576–4585 (2015).
[Crossref]

J. Surf. Eng. Mater. Adv. Technol. (1)

P. Deprez, C. F. Melian, F. Breaban, and J.-F. Coutouly, “Glass marking with CO2 laser: experimental study of the interaction laser material,” J. Surf. Eng. Mater. Adv. Technol. 02(1), 32–39 (2012).
[Crossref]

Mater. Lett. (1)

Y.-S. Chiua, C.-L. Chengb, T.-J. Whanga, and G.-Y. Jib, “Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells,” Mater. Lett. 126, 143–146 (2014).
[Crossref]

Microelectron. Eng. (1)

H. Sakata, S. Chakraborty, and M. Wakaki, “Patterning of Bi2O3, films using laser-induced forward and backward transfer techniques,” Microelectron. Eng. 96(96), 56–60 (2012).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

K. S. Zelenskaab, S. E. Zelenskya, L. V. Poperenkoa, K. Kanevc, V. Mizeikisc, and V. A. Gnatyukd, “Thermal mechanisms of laser patterning in transparent polymers with light-absorbing microparticless,” Opt. Laser Technol. 76, 96–100 (2016).
[Crossref]

Photovoltaics (1)

H. Mackel and P. P. Altermatt, “Current transport through lead–borosilicate interfacial glass layers at the screen–printed silver-silicon front contact,” Photovoltaics 5(4), 1034–1046 (2015).
[Crossref]

Phys. Rev. B (1)

H. C. Ong and R. P. H. Chang, “Effect of laser intensity on the properties of carbon plasmas and deposited films,” Phys. Rev. B 55(19), 13213–13220 (1997).
[Crossref]

Popular Plastics and Packaging (1)

Y. B. Vasudeo, “UV and electron beam technology for printing and packaging applications,” Popular Plastics and Packaging 59(5), 26–29 (2014).

Sol. Energy Mater. (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Surf. Coat. Tech. (1)

A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review,” Surf. Coat. Tech. 82(3), 199–213 (1996).
[Crossref]

Thin Solid Films (2)

R. A. Synowicki, B. D. Johs, and A. C. Martin, “Optical properties of soda-lime float glass from spectroscopic ellipsometry,” Thin Solid Films 519(9), 2907–2913 (2011).
[Crossref]

Th. Dumont, T. Lippert, A. Wokaun, and P. Leyvraz, “Laser writing of 2D data matrices in glass,” Thin Solid Films 2(453–454), 42–45 (2004).
[Crossref]

Other (6)

J. Pepi, Strength Properties of Glass and Ceramics (SPIE, 2014).

C. A. Harper, Handbook of Ceramics, Glasses, and Diamonds (McGraw-Hill, 2001).

B. E. Parker, “Method and apparatus for marking an egg with an advertisement and a freshness data, ” US, US20070229649(2007).

A. S. Fialkov, Carbon Interlayer Compounds and Compositions Thereof (Moscow Press, 1997).

S. M. Metev and V. P. Veiko, Laser-Assisted Micro Technology (Springer, 1994).

L. Jian, X. Ni, and A. He, Physics of the interaction for laser and materials (China Machine Press, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the pulsed laser patterning of glass substrates.
Fig. 2
Fig. 2 (a) SEM photographs of the patterning surface and (b) the enlarged photographs.
Fig. 3
Fig. 3 (a) EDS analysis of the unpatterned area and (b) the patterned area.
Fig. 4
Fig. 4 X-ray diffraction of the patterns on the glass substrate.
Fig. 5
Fig. 5 (a) Before cleaning (b) Washed by deionized water (c) Washed by sulphuric acid solution Endurance test of samples.
Fig. 6
Fig. 6 High speed photos of laser ablation of graphite target and the pattern with different laser fluence under the condition of the scanning speed of 400mm/s, the repetition rate of 70kHz and the pulse width of 14ns.
Fig. 7
Fig. 7 The physical process of black color laser patterning of glass substrates.
Fig. 8
Fig. 8 (a) Surface topography of the dot array, (b) Three-dimensional topography of the dot array.
Fig. 9
Fig. 9 (a) Surface topography of the stripe structure, (b)Three-dimensional topography of the stripe structure.

Tables (1)

Tables Icon

Table 1 The main physical-thermal characteristics of glasses [21,22]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T C = 2 A C q 0 a c τ kc π + T H
V P 8 P av υ 2 τρπ d 0 2 h 2 L u

Metrics