Abstract

We analyze the properties of HE2 surface plasmon polaritons on fiber-integrated gold, silver and copper nanowires and find a systematic blue-shift of the measured resonance wavelengths which we attribute to the emergence of a narrow nanometer-sized gap between the nanowire surface and the surrounding silica cladding. Our analysis relies on the determination of the nanogap width from the experimentally measured phase-matching wavelength by comparison with numerical simulations, revealing that these gaps are much smaller than expected from the bulk material considerations. This implies a diminished coefficient of thermal expansion along the radial direction that we believe results from the domination of interfacial van der Waals forces at high temperatures. These results are important for future fiber designs involving nanowires fabricated by pressure-assisted melt filling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micron-sized gold-nickel alloy wire integrated silica optical fibers

Chhavi Jain, Alessandro Tuniz, Klemens Reuther, Torsten Wieduwilt, Markus Rettenmayr, and Markus. A. Schmidt
Opt. Mater. Express 6(6) 1790-1799 (2016)

Calculation of propagation characteristics of surface plasmons in gold/silver nanowires

Jitender, Arun Kumar, R. K. Varshney, and Manoj Kumar
Appl. Opt. 54(12) 3715-3719 (2015)

Plasmon resonances on gold nanowires directly drawn in a step-index fiber

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St.J. Russell
Opt. Lett. 35(15) 2573-2575 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [Crossref]
  2. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
    [Crossref]
  3. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  4. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
    [Crossref] [PubMed]
  5. R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
    [Crossref] [PubMed]
  6. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  7. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32(12), 1647–1649 (2007).
    [Crossref] [PubMed]
  8. R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
    [Crossref] [PubMed]
  9. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [Crossref] [PubMed]
  10. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
    [Crossref]
  11. H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
    [Crossref] [PubMed]
  12. C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
    [Crossref]
  13. A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
    [Crossref] [PubMed]
  14. A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips,” Opt. Express 24(7), 7507–7524 (2016).
    [Crossref] [PubMed]
  15. A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
    [Crossref]
  16. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
    [Crossref]
  17. D. Ofte, “The viscosities of liquid uranium, gold and lead,” J. Nucl. Mater. 22(1), 28–32 (1967).
    [Crossref]
  18. I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: results from measurements on ground and in space,” Phys. Rev. Lett. 75(22), 4043 (1995).
    [Crossref] [PubMed]
  19. R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
    [Crossref]
  20. K. Gering and F. Sauerwald, “Über die innere Reibung geschmolzener Metalle und Legierungen. VI. Die innere Reibung von Pb, Cd, Zn, Ag, Sn, K, Na und die Frage der Strukturviskosität von Amalgamen,” Z. Anorg. Allg. Chem. 223(2), 204–208 (1935).
    [Crossref]
  21. G. Bernard and C. H. P. Lupis, “The surface tension of liquid silver alloys: Part I. silver-gold alloys,” Metall. Trans. 2(2), 555–559 (1971).
    [Crossref]
  22. R. Sangiorgi, M. L. Muolo, and A. Passerone, “Reactivity of vitreous silica in contact with liquid metals,” Rev. Int. Hautes Temp. Refract. 22, 175–184 (1985).
  23. M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
    [Crossref]
  24. D. A. Harrison, D. Yan, and S. Blair, “The surface tension of liquid copper,” J. Chem. Thermodyn. 9(12), 1111–1119 (1977).
    [Crossref]
  25. J. V. Naidich, “The wettability of solids by liquid metals,” in Progress in surface and membrane science Vol. 14 (Academic, 1981), pp. 353–484.
    [Crossref]
  26. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, 1986).
  27. I. Suh, H. Ohta, and Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” J. Mater. Sci. 23(2), 757–760 (1988).
    [Crossref]
  28. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1209 (1965).
    [Crossref]
  29. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  30. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [Crossref] [PubMed]
  31. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 9901 (2007).
    [Crossref]
  32. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
    [Crossref]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370 (1972).
    [Crossref]
  34. T. Grujic, B. T. Kuhlmey, C. M. de Sterke, and C. G. Poulton, “Modelling of photonic crystal fiber based on layered inclusions,” J. Opt. Soc. Am. B 26(10), 1852–1861 (2009).
    [Crossref]
  35. P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
    [Crossref]
  36. C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22(24), 29554–29567 (2014).
  37. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, 2011), Chap. 13.
  38. B. Harris, “Shrinkage stresses in glass/resin composites,” J. Mater. Sci. 13(1), 173–177 (1978).
    [Crossref]
  39. G. Kaye and T. Laby, Tables of Physical and Chemical Constants (Longman, 1995).

2017 (1)

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

2016 (4)

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips,” Opt. Express 24(7), 7507–7524 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

2012 (2)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
[Crossref] [PubMed]

2011 (2)

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
[Crossref]

2010 (1)

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

2009 (1)

2008 (4)

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[Crossref] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref] [PubMed]

M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

2007 (2)

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32(12), 1647–1649 (2007).
[Crossref] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 9901 (2007).
[Crossref]

2006 (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

1995 (1)

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: results from measurements on ground and in space,” Phys. Rev. Lett. 75(22), 4043 (1995).
[Crossref] [PubMed]

1988 (2)

R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
[Crossref]

I. Suh, H. Ohta, and Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” J. Mater. Sci. 23(2), 757–760 (1988).
[Crossref]

1985 (1)

R. Sangiorgi, M. L. Muolo, and A. Passerone, “Reactivity of vitreous silica in contact with liquid metals,” Rev. Int. Hautes Temp. Refract. 22, 175–184 (1985).

1984 (1)

1978 (1)

B. Harris, “Shrinkage stresses in glass/resin composites,” J. Mater. Sci. 13(1), 173–177 (1978).
[Crossref]

1977 (1)

D. A. Harrison, D. Yan, and S. Blair, “The surface tension of liquid copper,” J. Chem. Thermodyn. 9(12), 1111–1119 (1977).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370 (1972).
[Crossref]

1971 (1)

G. Bernard and C. H. P. Lupis, “The surface tension of liquid silver alloys: Part I. silver-gold alloys,” Metall. Trans. 2(2), 555–559 (1971).
[Crossref]

1967 (1)

D. Ofte, “The viscosities of liquid uranium, gold and lead,” J. Nucl. Mater. 22(1), 28–32 (1967).
[Crossref]

1965 (1)

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1209 (1965).
[Crossref]

1935 (1)

K. Gering and F. Sauerwald, “Über die innere Reibung geschmolzener Metalle und Legierungen. VI. Die innere Reibung von Pb, Cd, Zn, Ag, Sn, K, Na und die Frage der Strukturviskosität von Amalgamen,” Z. Anorg. Allg. Chem. 223(2), 204–208 (1935).
[Crossref]

1921 (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Antoniadis, K. D.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Assael, M. J.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Badding, J. V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Banish, R. M.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Bansal, N. P.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, 1986).

Bartelt, H.

Bauerschmidt, S. T.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Bernard, G.

G. Bernard and C. H. P. Lupis, “The surface tension of liquid silver alloys: Part I. silver-gold alloys,” Metall. Trans. 2(2), 555–559 (1971).
[Crossref]

Bird, D.

Blair, S.

D. A. Harrison, D. Yan, and S. Blair, “The surface tension of liquid copper,” J. Chem. Thermodyn. 9(12), 1111–1119 (1977).
[Crossref]

Bresson, B.

Brun, C.

Buet, X.

Capelle, M. S.

Chatain, D.

R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
[Crossref]

Chemnitz, M.

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370 (1972).
[Crossref]

Ciccotti, M.

Cunff, L. Le

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
[Crossref]

de Sterke, C. M.

Delith, J.

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

Doremus, R. H.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, 1986).

Dridi, M.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
[Crossref]

Egry, I.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: results from measurements on ground and in space,” Phys. Rev. Lett. 75(22), 4043 (1995).
[Crossref] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 9901 (2007).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Eustathopoulos, N.

R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
[Crossref]

Fleming, J. W.

George, A.

Gering, K.

K. Gering and F. Sauerwald, “Über die innere Reibung geschmolzener Metalle und Legierungen. VI. Die innere Reibung von Pb, Cd, Zn, Ag, Sn, K, Na und die Frage der Strukturviskosität von Amalgamen,” Z. Anorg. Allg. Chem. 223(2), 204–208 (1935).
[Crossref]

Ghomari, A.

Gopalan, V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Grujic, T.

Harris, B.

B. Harris, “Shrinkage stresses in glass/resin composites,” J. Mater. Sci. 13(1), 173–177 (1978).
[Crossref]

Harrison, D. A.

D. A. Harrison, D. Yan, and S. Blair, “The surface tension of liquid copper,” J. Chem. Thermodyn. 9(12), 1111–1119 (1977).
[Crossref]

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Healy, N.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Hou, J.

Israelachvili, J. N.

J. N. Israelachvili, Intermolecular and Surface Forces (Academic, 2011), Chap. 13.

Jacobs, G.

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: results from measurements on ground and in space,” Phys. Rev. Lett. 75(22), 4043 (1995).
[Crossref] [PubMed]

Jain, C.

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370 (1972).
[Crossref]

Joly, N. Y.

Kakarantzas, G.

Kalyva, A. E.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Kaschnitz, E.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Kaye, G.

G. Kaye and T. Laby, Tables of Physical and Chemical Constants (Longman, 1995).

Knight, J. C.

Krishnamurthi, M.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Kuhlmey, B. T.

Laby, T.

G. Kaye and T. Laby, Tables of Physical and Chemical Constants (Longman, 1995).

Laroche, T.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
[Crossref]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 9901 (2007).
[Crossref]

Lecomte, P.

Lee, H. W.

Lohoefer, G.

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: results from measurements on ground and in space,” Phys. Rev. Lett. 75(22), 4043 (1995).
[Crossref] [PubMed]

Lupis, C. H. P.

G. Bernard and C. H. P. Lupis, “The surface tension of liquid silver alloys: Part I. silver-gold alloys,” Metall. Trans. 2(2), 555–559 (1971).
[Crossref]

Maier, S.

Malitson, I. H.

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1209 (1965).
[Crossref]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 9901 (2007).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Muolo, M. L.

R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
[Crossref]

R. Sangiorgi, M. L. Muolo, and A. Passerone, “Reactivity of vitreous silica in contact with liquid metals,” Rev. Int. Hautes Temp. Refract. 22, 175–184 (1985).

Naidich, J. V.

J. V. Naidich, “The wettability of solids by liquid metals,” in Progress in surface and membrane science Vol. 14 (Academic, 1981), pp. 353–484.
[Crossref]

Ofte, D.

D. Ofte, “The viscosities of liquid uranium, gold and lead,” J. Nucl. Mater. 22(1), 28–32 (1967).
[Crossref]

Ohta, H.

I. Suh, H. Ohta, and Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” J. Mater. Sci. 23(2), 757–760 (1988).
[Crossref]

Passerone, A.

R. Sangiorgi, M. L. Muolo, and A. Passerone, “Reactivity of vitreous silica in contact with liquid metals,” Rev. Int. Hautes Temp. Refract. 22, 175–184 (1985).

Peacock, A. C.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Pearce, G. J.

Petrovich, M. N.

Poletti, F.

Poulton, C. G.

Prill Sempere, L.

M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

Rettenmayr, M.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

Reuther, K.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

Richardson, D. J.

Roger, J. P.

Ru, E. C. Le

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Russell, P. St. J.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref] [PubMed]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32(12), 1647–1649 (2007).
[Crossref] [PubMed]

Russell, R. F.

Sangiorgi, R.

R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
[Crossref]

R. Sangiorgi, M. L. Muolo, and A. Passerone, “Reactivity of vitreous silica in contact with liquid metals,” Rev. Int. Hautes Temp. Refract. 22, 175–184 (1985).

Sauerwald, F.

K. Gering and F. Sauerwald, “Über die innere Reibung geschmolzener Metalle und Legierungen. VI. Die innere Reibung von Pb, Cd, Zn, Ag, Sn, K, Na und die Frage der Strukturviskosität von Amalgamen,” Z. Anorg. Allg. Chem. 223(2), 204–208 (1935).
[Crossref]

Sazio, P. J. A.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Schmidt, M. A.

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips,” Opt. Express 24(7), 7507–7524 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
[Crossref] [PubMed]

R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
[Crossref] [PubMed]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber,” Opt. Lett. 37(14), 2946–2948 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32(12), 1647–1649 (2007).
[Crossref] [PubMed]

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Sparks, J. R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Spittel, R.

Suh, I.

I. Suh, H. Ohta, and Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” J. Mater. Sci. 23(2), 757–760 (1988).
[Crossref]

Tessier, G.

Tuniz, A.

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips,” Opt. Express 24(7), 7507–7524 (2016).
[Crossref] [PubMed]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Uebel, P.

Vandembroucq, D.

Vial, A.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
[Crossref]

Wakeham, W. A.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Waseda, Y.

I. Suh, H. Ohta, and Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” J. Mater. Sci. 23(2), 757–760 (1988).
[Crossref]

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Weidlich, S.

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

Wieduwilt, T.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

Wu, J.

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Yan, D.

D. A. Harrison, D. Yan, and S. Blair, “The surface tension of liquid copper,” J. Chem. Thermodyn. 9(12), 1111–1119 (1977).
[Crossref]

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103(3), 849–853 (2011).
[Crossref]

Appl. Phys. Lett. (2)

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71(9), 742–748 (1988).
[Crossref]

J. Chem. Phys. (2)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 9901 (2007).
[Crossref]

J. Chem. Thermodyn. (1)

D. A. Harrison, D. Yan, and S. Blair, “The surface tension of liquid copper,” J. Chem. Thermodyn. 9(12), 1111–1119 (1977).
[Crossref]

J. Mater. Sci. (2)

I. Suh, H. Ohta, and Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” J. Mater. Sci. 23(2), 757–760 (1988).
[Crossref]

B. Harris, “Shrinkage stresses in glass/resin composites,” J. Mater. Sci. 13(1), 173–177 (1978).
[Crossref]

J. Nucl. Mater. (1)

D. Ofte, “The viscosities of liquid uranium, gold and lead,” J. Nucl. Mater. 22(1), 28–32 (1967).
[Crossref]

J. Opt. Soc. Am. A (1)

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1209 (1965).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, “Reference data for the density and viscosity of liquid copper and liquid tin,” J. Phys. Chem. Ref. Data 39(3), 033105 (2010).
[Crossref]

Metall. Trans. (1)

G. Bernard and C. H. P. Lupis, “The surface tension of liquid silver alloys: Part I. silver-gold alloys,” Metall. Trans. 2(2), 555–559 (1971).
[Crossref]

Nano Lett. (1)

A. Tuniz, M. Chemnitz, J. Delith, S. Weidlich, and M. A. Schmidt, “Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber,” Nano Lett. 17(2), 631–637 (2017). .
[Crossref]

Nat. Photon. (1)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photon. 6(3), 174–179 (2012).
[Crossref]

Opt. Express (7)

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[Crossref] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref] [PubMed]

R. Spittel, H. Bartelt, and M. A. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741–11753 (2014).
[Crossref] [PubMed]

C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22(24), 29554–29567 (2014).

R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
[Crossref] [PubMed]

A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips,” Opt. Express 24(7), 7507–7524 (2016).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mat. Express (1)

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mat. Express 6(6), 1790–1799 (2016).
[Crossref]

Phys. Rev. (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Phys. Rev. B (2)

M. A. Schmidt, L. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370 (1972).
[Crossref]

Phys. Rev. Lett. (1)

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: results from measurements on ground and in space,” Phys. Rev. Lett. 75(22), 4043 (1995).
[Crossref] [PubMed]

Rev. Int. Hautes Temp. Refract. (1)

R. Sangiorgi, M. L. Muolo, and A. Passerone, “Reactivity of vitreous silica in contact with liquid metals,” Rev. Int. Hautes Temp. Refract. 22, 175–184 (1985).

Z. Anorg. Allg. Chem. (1)

K. Gering and F. Sauerwald, “Über die innere Reibung geschmolzener Metalle und Legierungen. VI. Die innere Reibung von Pb, Cd, Zn, Ag, Sn, K, Na und die Frage der Strukturviskosität von Amalgamen,” Z. Anorg. Allg. Chem. 223(2), 204–208 (1935).
[Crossref]

Other (4)

J. V. Naidich, “The wettability of solids by liquid metals,” in Progress in surface and membrane science Vol. 14 (Academic, 1981), pp. 353–484.
[Crossref]

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, 1986).

G. Kaye and T. Laby, Tables of Physical and Chemical Constants (Longman, 1995).

J. N. Israelachvili, Intermolecular and Surface Forces (Academic, 2011), Chap. 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of hybrid fiber being composed of a metallic nanowire (yellow) and a parallel-running graded-index core (blue) separated by a center-to-center distance Λ. The green area highlights the nanogap which is formed due to thermal contraction of the NW during fabrication.
Fig. 2
Fig. 2 Setup for measureming the spectral distribution of the transmission of the fiber samples. The spectral attenuation was determined using a cutback technique. Details of the experimental setup and experimental methods are given in the main text.
Fig. 3
Fig. 3 Comparison of simulations and measurements of a silver-filled MGIF including a NW of diameter of 380 nm. (a) Spectral distribution of real parts of the calculated effective indices of the shifted and non-shifted HE2 SPP (green lines) and the HE11-like fundamental core modes (blue solid lines). The difference between both polarizations is smaller than 10−5 in the investigated spectral window. The solid black line represents the refractive index of bulk silica. (b) Attenuation spectra of the x-polarized (blue lines) and y-polarized (red lines) core modes. Solid lines represent simulations, while the dotted lines refer to the measurements. The vertical dashed line corresponds to the quasi-cutoff wavelength using Eq. 5 from [5].
Fig. 4
Fig. 4 Dependence of phase-matching wavelength on hole diameter ((a) gold, (b) silver and (c) copper). The blue solid lines correspond to simulations using the fitted relative gap width w/dhole based on determined values shown in Table 4. The shaded areas cover the range between the minimum and maximum values of the fitted parameters. The broken lines represent the phase-matching wavelengths assuming no gap (red dotted) and the values from Table 2 (green dashed). In all plots the blue circles refer to the measured phase-matching wavelengths.
Fig. 5
Fig. 5 Illustration of the NW contraction (a) above and (b) below the threshold temperature. The solid horizontal lines correspond to an mean level of the rough surfaces of the hole and NW, respectively, separated by the average distance h.

Tables (4)

Tables Icon

Table 1 Viscosity, surface tension and contact angle for gold, silver and copper at the filling temperature Tfill.

Tables Icon

Table 2 Fit parameters A1 and A2 in Eq. (2) for gold, silver and copper [27] as well as the resulting relative gap width for a cooling from the melting temperature Tm to room temperature.

Tables Icon

Table 3 Fit parameters for the D2CP model of the permittivity for gold, silver and copper.

Tables Icon

Table 4 Overview of measured resonance wavelengths λr and the resulting calculated gap widths w for all investigated hole diameters dhole. The shaded row corresponds to the sample analyzed in Fig. 3

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t fill 4 η d hole γ cos ( θ ) + d hole 2 p / 4 L 2 ,
w = d hole 2 ( [ A 1 α SiO 2 ] [ T m 293 K ] + A 2 [ T m 293 K ] 2 ) .
ε = ε 1 λ p 2 ( 1 / λ 2 + i / γ p λ ) + k = 1 2 A k λ k [ e i ϕ k 1 / λ k 1 / λ i γ k + e i ϕ k 1 / λ k + 1 / λ + i / γ k ] .

Metrics