Abstract

Atomically thin two-dimensional (2D) layered materials, including graphene, boron nitride, and transition metal dichalcogenides (TMDCs), can exhibit novel phenomena distinct from their bulk counterparts. In this work, we report the growth of 2D MoS2 with the configuration of a multilayer MoS2 nanodot stacked on the center of the monolayer MoS2 flake by a single-step and catalyst-free chemical vapor deposition method. The local photoluminescence of the multilayer MoS2 nanodot is significantly enhanced in comparison to that of the basal monolayer MoS2. The reason of this novel phenomenon is owing to the existence of oxygen-related defects, which resulted from the tapered morphology of MoS2 nanodots with many edge states and adsorbed O molecules. The results presented here may open a pathway to modulate the optical properties of future optoelectronic devices using MoS2 flakes with special configuration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tip-enhanced photoluminescence spectroscopy of monolayer MoS2

Lingyan Meng and Mengtao Sun
Photon. Res. 5(6) 745-749 (2017)

Highly linear polarized photoluminescence from a rippled WSe2 monolayer

Bilin Li, Zhongqi Ren, Ni Zhong, and Wei Xie
Opt. Express 27(9) 12436-12442 (2019)

Modification of degenerative photoluminescence in aged monolayer WS2 by PC61BM surface processing

Yu Liu, Xin Zheng, Han Li, Zhongjie Xu, and Tian Jiang
Appl. Opt. 56(4) 890-896 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev. 44(21), 7715–7736 (2015).
    [Crossref] [PubMed]
  2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  3. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
    [Crossref] [PubMed]
  4. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  5. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
    [Crossref] [PubMed]
  6. Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, “Atomically Thin MoS2: a versatile nongraphene 2D material,” Adv. Funct. Mater. 26(13), 2046–2069 (2016).
    [Crossref]
  7. S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
    [Crossref] [PubMed]
  8. C. Rao and A. Nag, “Inorganic analogues of graphene,” Eur. J. Inorg. Chem. 2010(27), 4244–4250 (2010).
    [Crossref]
  9. Y. Shi, H. Li, and L. J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chem. Soc. Rev. 44(9), 2744–2756 (2015).
    [Crossref] [PubMed]
  10. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  11. Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
    [Crossref] [PubMed]
  12. P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
    [Crossref] [PubMed]
  13. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
    [Crossref] [PubMed]
  14. M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
    [Crossref] [PubMed]
  15. D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
    [Crossref] [PubMed]
  16. Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
    [Crossref] [PubMed]
  17. Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
    [Crossref] [PubMed]
  18. Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
    [Crossref] [PubMed]
  19. Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
    [Crossref] [PubMed]
  20. Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
    [Crossref] [PubMed]
  21. R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
    [Crossref] [PubMed]
  22. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
    [Crossref] [PubMed]
  23. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
    [Crossref] [PubMed]
  24. M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
    [Crossref] [PubMed]
  25. J. Pankove, Optical Processes in Semiconductors (Prentice Hall, 1971).
  26. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
    [Crossref] [PubMed]

2016 (3)

Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, “Atomically Thin MoS2: a versatile nongraphene 2D material,” Adv. Funct. Mater. 26(13), 2046–2069 (2016).
[Crossref]

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

2015 (7)

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Y. Shi, H. Li, and L. J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chem. Soc. Rev. 44(9), 2744–2756 (2015).
[Crossref] [PubMed]

H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev. 44(21), 7715–7736 (2015).
[Crossref] [PubMed]

2014 (3)

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

2013 (2)

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

2012 (2)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

2011 (2)

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

2010 (4)

C. Rao and A. Nag, “Inorganic analogues of graphene,” Eur. J. Inorg. Chem. 2010(27), 4244–4250 (2010).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

1992 (1)

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

1987 (1)

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Addou, R.

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Ager, J. W

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

Ager, J. W.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Ahn, G. H

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

Aizpurua, J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Amani, M.

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Azcatl, A.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Bai, J.

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Baumberg, J. J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Bertolazzi, S.

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Birdwell, A. G.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Bowman, R. W.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Brivio, J.

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Brus, L. E.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Chatzakis, I.

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Chen, C. C.

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chen, Q.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Chen, Y.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Chhowalla, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Cho, K.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Chow, P. K.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Coehoorn, R.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Cronin, S. B.

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Crowne, F. J.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Dai, L.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Dhall, R.

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Dijkstra, J.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Dubertret, B.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Dubey, M.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Eda, G.

H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev. 44(21), 7715–7736 (2015).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Ezhilarasu, G.

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Fang, Z.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Feng, J.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Feng, R.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Flipse, C. J.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Gao, J.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Gao, T.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Giustiniano, F.

H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev. 44(21), 7715–7736 (2015).
[Crossref] [PubMed]

Haas, C.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

He, D.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

He, J. H.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

He, K.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Herrmann, L. O.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Hersam, M. C.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Hone, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Ithurria, S.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Jacobs-Gedrim, R. B.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Jariwala, D.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Javey, A.

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Ji, Q.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kan, M.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Kang, Y.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Kc, S.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kiriya, D.

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Koratkar, N.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Lauhon, L. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Lee, C.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Lee, G. H.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Lee, S. C.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Li, H.

Y. Shi, H. Li, and L. J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chem. Soc. Rev. 44(9), 2744–2756 (2015).
[Crossref] [PubMed]

Li, L. J.

Y. Shi, H. Li, and L. J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chem. Soc. Rev. 44(9), 2744–2756 (2015).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, Y.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Li, Z.

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Liang, Z.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Lien, D. H.

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Lischka, K.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

Liu, M.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Lou, J.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Lu, T. M.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Lu, Y.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Ma, D.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Madhvapathy, S. R.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Mao, N.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Marks, T. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Mertens, J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Miao, F.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Nag, A.

C. Rao and A. Nag, “Inorganic analogues of graphene,” Eur. J. Inorg. Chem. 2010(27), 4244–4250 (2010).
[Crossref]

Najmaei, S.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Nan, H.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Ni, Z.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Noh, J.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Pan, W.

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Qiao, X.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Qiu, C.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Rao, C.

C. Rao and A. Nag, “Inorganic analogues of graphene,” Eur. J. Inorg. Chem. 2010(27), 4244–4250 (2010).
[Crossref]

Ryu, S.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Saji, K. J.

Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, “Atomically Thin MoS2: a versatile nongraphene 2D material,” Adv. Funct. Mater. 26(13), 2046–2069 (2016).
[Crossref]

Sangwan, V. K.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

Schmidt, H.

H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev. 44(21), 7715–7736 (2015).
[Crossref] [PubMed]

Schmidt, T.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Sheng, B.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Shi, Y.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Y. Shi, H. Li, and L. J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chem. Soc. Rev. 44(9), 2744–2756 (2015).
[Crossref] [PubMed]

Sigle, D. O.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Song, Q.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Sun, L.

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sun, Q.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Taheri, P. P.

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

Tan, P.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Tan, P. H.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Terrones, H.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Tiwari, A.

Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, “Atomically Thin MoS2: a versatile nongraphene 2D material,” Adv. Funct. Mater. 26(13), 2046–2069 (2016).
[Crossref]

Tour, J. M.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Tserkezis, C.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Vajtai, R.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Venkata Subbaiah, Y. P.

Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, “Atomically Thin MoS2: a versatile nongraphene 2D material,” Adv. Funct. Mater. 26(13), 2046–2069 (2016).
[Crossref]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Wallace, R. M

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

Wallace, R. M.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Wan, Y.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, J.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, W.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Wang, Z.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Wold, A.

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Wu, X.

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Xia, Z.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Xiao, J.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Xu, Q.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Yablonovitch, E.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Yakobson, B. I.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Yan, H.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Yang, H. Y.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Ye, R.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Yu, B.

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

Yu, T.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Zhang, H.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Zhang, J.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Zhang, K.

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Zhang, X.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Zhang, Y.

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Zhao, W.

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

Zhou, W.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Zhu, X.

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Zou, X.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Zulehner, W.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

ACS Nano (7)

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref] [PubMed]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, “Layer-by-layer thinning of MoS2 by plasma,” ACS Nano 7(5), 4202–4209 (2013).
[Crossref] [PubMed]

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9(2), 1520–1527 (2015).
[Crossref] [PubMed]

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding,” ACS Nano 8(6), 5738–5745 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, “Atomically Thin MoS2: a versatile nongraphene 2D material,” Adv. Funct. Mater. 26(13), 2046–2069 (2016).
[Crossref]

Adv. Mater. (1)

Z. Li, R. Ye, R. Feng, Y. Kang, X. Zhu, J. M. Tour, and Z. Fang, “Graphene quantum dots doping of MoS2 monolayers,” Adv. Mater. 27(35), 5235–5240 (2015).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

Y. Shi, H. Li, and L. J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chem. Soc. Rev. 44(9), 2744–2756 (2015).
[Crossref] [PubMed]

H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev. 44(21), 7715–7736 (2015).
[Crossref] [PubMed]

Eur. J. Inorg. Chem. (1)

C. Rao and A. Nag, “Inorganic analogues of graphene,” Eur. J. Inorg. Chem. 2010(27), 4244–4250 (2010).
[Crossref]

Nano Lett. (5)

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Z. Li, G. Ezhilarasu, I. Chatzakis, R. Dhall, C. C. Chen, and S. B. Cronin, “Indirect band gap emission by hot electron injection in metal/MoS2 and metal/WSe2 heterojunctions,” Nano Lett. 15(6), 3977–3982 (2015).
[Crossref] [PubMed]

Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial monolayer MoS2 on mica with novel photoluminescence,” Nano Lett. 13(8), 3870–3877 (2013).
[Crossref] [PubMed]

M. Amani, P. P. Taheri, R. Addou, G. H Ahn, D. Kiriya, D. H. Lien, J. W Ager, R. M Wallace, and A. Javey, “Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5, 5246 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (2)

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

R. Coehoorn, C. Haas, J. Dijkstra, C. J. Flipse, A. Wold, and A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B Condens. Matter 35(12), 6195–6202 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Science (1)

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Small (1)

Y. Wan, H. Zhang, W. Wang, B. Sheng, K. Zhang, Y. Wang, Q. Song, N. Mao, Y. Li, X. Wang, J. Zhang, and L. Dai, “Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate,” Small 12(2), 198–203 (2016).
[Crossref] [PubMed]

Other (1)

J. Pankove, Optical Processes in Semiconductors (Prentice Hall, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Optical image of MoS2 flakes deposited on SiO2/Si substrate; (b) a representative optical image of the triangular MoS2 flake.
Fig. 2
Fig. 2 (a) the AFM image of the triangular MoS2 flake; (b)-(c) the corresponding height profile along the green lines b and c in (a); (d) high-resolution TEM image of the edge of a MoS2 flake; (e) The high resolution AFM image of a MoS2 nanodot at the center of a triangular flake; (f) step height profile of the corresponding region of the MoS2 nanodot.
Fig. 3
Fig. 3 (a) The PL spectra from the center and outside region of a single triangular MoS2 flake, left inset showing the enlarged PL spectra of B1 peak; (b) the corresponding PL mapping of 672 nm; (c) the corresponding Raman spectra, insets showing the Raman mappings of the E2g and A1g peaks.
Fig. 4
Fig. 4 The PL spectra of the center and edge regions of the MoS2 flakes with different shapes: (a) truncated triangular flake, (b) four-point star, (c) six-point star.
Fig. 5
Fig. 5 The Raman spectra from the center and outside region of the MoS2 flakes with different domains: (a) truncated triangular flake, (b) four-point star, (c) six-point star.
Fig. 6
Fig. 6 Statistical survey of A1 peak intensity ratio of multilayer/monolayer from the reported references and our work.
Fig. 7
Fig. 7 (a) Power-dependent PL spectra of the outside region of the MoS2 sample in Fig. 1(a) at RT under the excitation wavelength of ~532 nm; (b) integrated PL intensity (I) of features A0, A-, and B as a function of the laser intensity (L) plotted on a log-log scale, inset showing the peak fitting and decomposition of the sample under 10% P0 laser power and the origin of features A0, A-, and B.
Fig. 8
Fig. 8 The PL spectra from center and edge region of the MoS2 crystal (a) before and (b) after annealing.

Metrics