Abstract

High quality factor (Q) Fano-like resonance with intense electromagnetic confinement is essential for ultrasensitive refractive index label-free sensors. Ordinarily, planar metamaterials with asymmetric configurations are the main approaches to demonstrate these extremely narrow line-width Fano-like resonances. In this work we present a high-Q Fano-like resonance with a symmetric structure consisting of a bilayer split-ring resonator (SRR) dimer structure with identical SRR array on each layer. We find that the interference between the resonances arising from the top and bottom layers of SRR array could also give rise to Fano-like resonance with more than twenty times enhanced Q -factor (Q = 19.28) comparing to that of a single layer SRR array (Q = 0.8). The figure of merit of this Fano-like resonance (FOM = 1.79) is about ten times larger than that of the ordinary electric dipole resonance (FOM = 0.186) when applied to terahertz sensing. Our symmetric structure opens up a new way to realize the high Q Fano-like resonances, which would facilitate the design of ultrasensitive chemical and biomolecular sensing platform at terahertz frequency.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range

Tian Ma, Qiuping Huang, Hongchuan He, Yi Zhao, XIaoxia Lin, and Yalin Lu
Opt. Express 27(12) 16624-16634 (2019)

High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures

Jie Shu, Weilu Gao, Kimberly Reichel, Daniel Nickel, Jason Dominguez, Igal Brener, Daniel M. Mittleman, and Qianfan Xu
Opt. Express 22(4) 3747-3753 (2014)

Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials

Shengyan Yang, Chengchun Tang, Zhe Liu, Bo Wang, Chun Wang, Junjie Li, Li Wang, and Changzhi Gu
Opt. Express 25(14) 15938-15946 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  3. F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
    [Crossref]
  4. L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).
  5. B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
    [Crossref]
  6. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  7. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
    [Crossref]
  8. N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328, 582 (2010).
    [Crossref] [PubMed]
  9. X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
    [Crossref] [PubMed]
  10. S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
    [Crossref]
  11. C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
    [Crossref]
  12. T. Driscoll, G. O. Andreev, and D. N. Basov, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
    [Crossref]
  13. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [Crossref]
  14. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
    [Crossref] [PubMed]
  15. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
    [Crossref]
  16. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
    [Crossref]
  17. R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 142175 (2011).
    [Crossref]
  18. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
    [Crossref]
  19. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
    [Crossref]
  20. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref] [PubMed]
  21. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236 (2013).
    [Crossref] [PubMed]
  22. M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
    [Crossref] [PubMed]
  23. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
    [Crossref] [PubMed]
  24. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
    [Crossref]
  25. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
    [Crossref]
  26. Y. Ma, Q. Chen, J. Grant, S. Saha, A. Khalid, and David. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945 (2011).
    [Crossref] [PubMed]
  27. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
    [Crossref]
  28. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
    [Crossref]
  29. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
    [Crossref]
  30. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961).
    [Crossref]
  31. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).
  32. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
    [Crossref] [PubMed]
  33. T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
    [Crossref]

2016 (2)

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

2015 (8)

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

2014 (3)

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).

2013 (3)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

2012 (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

2011 (2)

2010 (2)

N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328, 582 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

2009 (2)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[Crossref]

2008 (3)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

2007 (5)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

T. Driscoll, G. O. Andreev, and D. N. Basov, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Al-Naib, I.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 142175 (2011).
[Crossref]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Amin, M.

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Andreev, G. O.

T. Driscoll, G. O. Andreev, and D. N. Basov, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Bagci, H.

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Basov, D. N.

T. Driscoll, G. O. Andreev, and D. N. Basov, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Bettiol, A. A.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).

Byun, S. J.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Chen, Q.

Chiam, S. Y.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

Choi, S. B.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Cong, L.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Cui, T. J.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Cumming, David.

Dalvit, D.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

Dignam, M. M.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

Ding, P.

Driscoll, T.

T. Driscoll, G. O. Andreev, and D. N. Basov, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

Fan, C.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961).
[Crossref]

Farhat, M.

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Frimmer, M.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[Crossref]

Gao, W.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Gong, Q.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Grant, J.

Guan, C. Y.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Hattori, K.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

He, J.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Ho, C. H.

B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
[Crossref]

Hu, Q.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Hu, X.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Huang, X.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Hwang, S. W.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

Kawashima, S.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Khalid, A.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Koch, M.

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 142175 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

Koenderink, A. F.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[Crossref]

Kono, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).

Kyoung, J.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Li, Y. X.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Li, Z. P.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Liang, E.

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Lu, C.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Lu, J. Y.

B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
[Crossref]

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Lv, T. T.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Ma, H. F.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Ma, Y.

Manjappa, M.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Miyamaru, F.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Mregen, M.

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Nishida, T.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Ogawa, Y.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Park, D. J.

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Saha, S.

Sersic, I.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shi, J. H.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Shi, K.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Shiraga, K.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Shu, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Singh, R.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 142175 (2011).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Suga, S.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Takeda, M. W.

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).

Verhagen, E.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[Crossref]

Wang, J.

Wang, Y.

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Xie, L.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

Xue, Q.

Yang, H.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Yang, Y.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Ying, Y.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

You, B.

B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
[Crossref]

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

Zhang, H.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 142175 (2011).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Zhang, Y.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328, 582 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Zheng, W. J.

B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
[Crossref]

Zhu, R.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Zhu, Z.

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4, 457–463 (2016).
[Crossref]

Adv. Optical Mater. (1)

S. B. Choi, D. J. Park, S. J. Byun, J. Kyoung, and S. W. Hwang, “Near-Zero Index: Optical Magnetic Mirror for Field Enhancement and Subwavelength Imaging Applications,” Adv. Optical Mater. 3, 1719–1725 (2015).
[Crossref]

Appl. Phys. Lett. (6)

T. Driscoll, G. O. Andreev, and D. N. Basov, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[Crossref]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-highQeven eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106, 011102 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

F. Miyamaru, K. Hattori, K. Shiraga, S. Kawashima, S. Suga, T. Nishida, M. W. Takeda, and Y. Ogawa, “Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials,” J. Infrared Milli. Terahz. Waves 35, 198–207 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41, 232004 (2008).
[Crossref]

Light: Science & Applications (1)

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Science & Applications 4, e302 (2015).
[Crossref]

Nanoscale (1)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69 (2012).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency”, Nat. Mater. 5, 5753 (2014).

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Opt. Express (3)

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 142175 (2011).
[Crossref]

B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23, 2049 (2015).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961).
[Crossref]

Phys. Rev. Lett. (3)

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Sci. Rep. (3)

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 867 (2015).

M. Amin, M. Farhat, and H. Bağcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, J. H. Shi, H. Zhang, and T. J. Cui, “Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition,” Sci. Rep. 6, 23186 (2016).
[Crossref]

Science (3)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
[Crossref] [PubMed]

N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328, 582 (2010).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mregen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloakfor visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry of bilayer SRR-dimer structure with dimensions l = 60 μm, w = 6μm, g = 3μm. The periodicity for the array is fixed at 75μm and the spacing is denoted as t.
Fig. 2
Fig. 2 (a) The transmission spectra of a single SRR under even-mode (n = 2) excitation with different spacer thickness. (b) Electric field strength and surface current density distributions (red arrows) at resonant frequency (skyblue dot) with t = 10 μm.
Fig. 3
Fig. 3 (a) The transmission spectra of a bilayer SRR under different spacer thickness. (b) The Fano and Lorentzian lineshape fitting for ω and ω+ at t = 10μm, respectively. (c) Electric field strength and surface current density distributions of the top SRR (SRR1) and the bottom SRR (SRR2) at the lower (ω), higher (ω+) resonant frequencies as well as the off-resonance frequency ωoff with t = 10μm. (d) The electric field strength distributions on the xz cut-plane of the SRR-dimer structure at ω and ω+.
Fig. 4
Fig. 4 (a)The transmission spectra of a bilayer SRR for different analyte thickness. (b) The relationship between the red shift of the resonant frequencies ω and ω+ and analyte thickness. (c) The transmission spectra of a bilayer SRR for different refractive index of analyte. (d) The frequency shifts of ω and ω+ versus refractive index of analyte.
Fig. 5
Fig. 5 Figure of merits of ω and ω+ under different analyte thicknesses.

Tables (1)

Tables Icon

Table 1 The concerned fitting parameters and corresponding Q factors for ω and ω+ at different substrate thicknesses.

Metrics