Abstract

Various fluorides are materials in nature that extend their transparency range to the shortest wavelengths in the far ultraviolet (FUV, 100nm<λ<200 nm). These are relevant materials to prepare multilayer coatings in the FUV for demanding applications such as space instrumentation for astrophysics, solar physics and atmosphere physics, as well as free electron lasers, plasma diagnostics, synchrotron radiation, lithography, spectroscopy, etc. Multilayer design requires an optical constant of the coating materials. Multilayers optimally alternate two transparent materials with contrasting refractive indices. The optical constants of a low-index material, MgF2, and of two high-index materials, LaF3 and CeF3, have been determined in a wide spectral range and are presented here. Thin films of MgF2, LaF3, and CeF3 were deposited by boat evaporation onto substrates at 523 K. Transmittance, reflectance, and ellipsometry measurements were performed in ranges jointly covering the 30-950-nm spectral range. This range was extended with literature data and extrapolations to obtain self-consistent optical constants using the Kramers-Kronig (KK) analysis. An iterative, double KK analysis procedure (successive reflectance-phase and k-n KK analyses) was carried out to obtain a self-consistent set of optical constants per material. With the final data sets, the experimental measurements were satisfactorily reproduced. Global self-consistency of the data sets was successfully evaluated through sum rules; additionally, local self-consistency at each photon energy range was also evaluated through a novel sum-rule method which involves window functions. The new sets of optical constant extend the data availability mainly to the FUV and beyond, particularly for CeF3, where few data had been reported.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-consistent optical constants of SiO2 and Ta2O5 films

Luis V. Rodríguez-de Marcos, Juan I. Larruquert, José A. Méndez, and José A. Aznárez
Opt. Mater. Express 6(11) 3622-3637 (2016)

Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films

Muamer Zukic, Douglas G. Torr, James F. Spann, and Marsha R. Torr
Appl. Opt. 29(28) 4284-4292 (1990)

Self-consistent optical constants of SiC thin films

Juan I. Larruquert, Antonio P. Pérez-Marín, Sergio García-Cortés, Luis Rodríguez-de Marcos, José A. Aznárez, and José A. Méndez
J. Opt. Soc. Am. A 28(11) 2340-2345 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
    [Crossref]
  2. S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, and M. Danailov, “Storage ring free-electron lasing at 176 nm--dielectric mirror development for vacuum ultraviolet free-electron lasers,” Appl. Opt. 45(23), 5866–5870 (2006).
    [Crossref] [PubMed]
  3. D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41(16), 3196–3204 (2002).
    [Crossref] [PubMed]
  4. R. Thielsch, “Optical coatings for the DUV/VUV,” Optical Interference Coatings, N. Kaiser and H.-K. Pulker, eds., Vol. 88 of Springer Series in Optical Sciences (Springer, 2003), pp. 257–280.
  5. L. J. Lingg, “Lanthanide trifluoride thin films: structure, composition, and optical properties,” Thesis, Univ. Arizona, 1990.
  6. M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF(2), CaF(2), LaF(3), MgF(2), Al(2)O(3), HfO(2), and SiO(2) thin films,” Appl. Opt. 29(28), 4284–4292 (1990).
    [Crossref] [PubMed]
  7. C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
    [Crossref]
  8. S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
    [Crossref]
  9. A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
    [Crossref]
  10. D. Smith and P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18(1), 111–115 (1979).
    [Crossref] [PubMed]
  11. A. S. Barrière and A. Lachter, “Optical transitions in disordered thin films of the ionic compounds MgF(2) and AIF(3) as a function of their conditions of preparation,” Appl. Opt. 16(11), 2865–2871 (1977).
    [Crossref] [PubMed]
  12. O. R. Wood, H. G. Craighead, J. E. Sweeney, and P. J. Maloney, “Vacuum ultraviolet loss in magnesium fluoride films,” Appl. Opt. 23(20), 3644–3649 (1984).
    [Crossref] [PubMed]
  13. J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
    [Crossref]
  14. A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).
  15. W. F. Hanson, E. T. Arakawa, and M. W. Williams, “Optical properties of MgO and MgF2 in the extreme ultraviolet region,” J. Appl. Phys. 43(4), 1661–1665 (1972).
    [Crossref]
  16. T. T. Cole and F. Oppenheimer, “Polarization by reflection and some optical constants in the extreme ultraviolet,” Appl. Opt. 1(6), 709–710 (1962).
    [Crossref]
  17. M. W. Williams, R. A. Macrae, and E. T. Arakawa, “Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
    [Crossref]
  18. F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
    [Crossref]
  19. H. Venghaus, “Energieverlustmessungen und Bestimmungoptischer Konstanten von MgO und MgF2,” Opt. Commun. 2(9), 447–451 (1971).
    [Crossref]
  20. P. J. Martin, W. G. Sainty, R. P. Netterfield, D. R. McKenzie, D. J. H. Cockayne, S. H. Sie, O. R. Wood, and H. G. Craighead, “Influence of ion assistance on the optical properties of MgF(2).,” Appl. Opt. 26(7), 1235–1239 (1987).
    [Crossref] [PubMed]
  21. J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
    [Crossref]
  22. St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
    [Crossref]
  23. H. Uhlig, R. Thielsch, J. Heber, and N. Kaiser, “Lanthanide tri-fluorides: a survey of the optical, mechanical and structural properties of thin films with emphasis of their use in the DUV – VUV- spectral range,” Proc. SPIE 5963, 59630N (2005).
    [Crossref]
  24. R. Thielsch, J. Heber, S. Jakobs, N. Kaiser, and A. Duparré, “Optical, structural and mechanical properties of lanthanide trifluoride thin film materials for use in the DUV-spectral region,” Optical Interference Coatings, Vol. 9 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 116–118.
  25. G. Hass, J. B. Ramsey, and R. Thun, “Optical properties of various evaporated rare earth oxides and fluorides,” J. Opt. Soc. Am. 49(2), 116–120 (1959).
    [Crossref]
  26. P. Chindaudom and K. Vedam, “Determination of the optical constants of an inhomogeneous transparent LaF(3) thin film on a transparent substrate by spectroscopic ellipsometry,” Opt. Lett. 17(7), 538–540 (1992).
    [Crossref] [PubMed]
  27. H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
    [Crossref]
  28. G. Stephan, M. Nisar, and A. Roth, “Spectre électronique du fluorure de lanthane dans l'ultraviolet extrême,” C. R. Acad. Sc. Paris, 274 B, 807–810 (1972).
  29. B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41(16), 3137–3141 (2002).
    [Crossref] [PubMed]
  30. C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
    [Crossref]
  31. S. M. Saini, “The role of f-states in the electronic and optical properties of rare-earth trifluorides (RF3, R=Ce and Gd): a full potential study,” J. Mater. Sci. 47(21), 7665–7670 (2012).
    [Crossref]
  32. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
    [Crossref]
  33. L. V. Rodríguez-de Marcos, J. A. Méndez, and J. I. Larruquert, “Tuning sum rules with window functions for optical constant evaluation,” J. Opt. 18(7), 075606 (2016).
    [Crossref]
  34. http://henke.lbl.gov/optical_constants/ .
  35. L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of SiO2 and Ta2O5 films,” Opt. Mater. Express 6(11), 3622–3637 (2016).
    [Crossref]
  36. M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47(13), C157–C161 (2008).
    [Crossref] [PubMed]
  37. H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43(6), 2835–2839 (1972).
    [Crossref]
  38. H. R. Philipp, “Optical properties of non-crystalline Si, SiO, SiOx and SiO2,” J. Phys. Chem. Solids 32(8), 1935–1945 (1971).
    [Crossref]
  39. C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
    [Crossref]
  40. Downloaded from the following web of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/Text/cover.html
  41. D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998), http://www.rxollc.com/idl/index.html .
    [Crossref]
  42. M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9(4), 1290–1298 (1974).
    [Crossref]
  43. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
    [Crossref]

2016 (2)

L. V. Rodríguez-de Marcos, J. A. Méndez, and J. I. Larruquert, “Tuning sum rules with window functions for optical constant evaluation,” J. Opt. 18(7), 075606 (2016).
[Crossref]

L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of SiO2 and Ta2O5 films,” Opt. Mater. Express 6(11), 3622–3637 (2016).
[Crossref]

2012 (1)

S. M. Saini, “The role of f-states in the electronic and optical properties of rare-earth trifluorides (RF3, R=Ce and Gd): a full potential study,” J. Mater. Sci. 47(21), 7665–7670 (2012).
[Crossref]

2010 (1)

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

2009 (1)

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

2008 (2)

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47(13), C157–C161 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (3)

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

H. Uhlig, R. Thielsch, J. Heber, and N. Kaiser, “Lanthanide tri-fluorides: a survey of the optical, mechanical and structural properties of thin films with emphasis of their use in the DUV – VUV- spectral range,” Proc. SPIE 5963, 59630N (2005).
[Crossref]

2002 (2)

2001 (2)

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

1998 (1)

D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998), http://www.rxollc.com/idl/index.html .
[Crossref]

1993 (1)

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

1992 (3)

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
[Crossref]

P. Chindaudom and K. Vedam, “Determination of the optical constants of an inhomogeneous transparent LaF(3) thin film on a transparent substrate by spectroscopic ellipsometry,” Opt. Lett. 17(7), 538–540 (1992).
[Crossref] [PubMed]

1990 (1)

1987 (1)

1986 (1)

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

1984 (1)

1980 (1)

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
[Crossref]

1979 (1)

1977 (1)

1974 (1)

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9(4), 1290–1298 (1974).
[Crossref]

1972 (3)

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43(6), 2835–2839 (1972).
[Crossref]

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
[Crossref]

W. F. Hanson, E. T. Arakawa, and M. W. Williams, “Optical properties of MgO and MgF2 in the extreme ultraviolet region,” J. Appl. Phys. 43(4), 1661–1665 (1972).
[Crossref]

1971 (2)

H. Venghaus, “Energieverlustmessungen und Bestimmungoptischer Konstanten von MgO und MgF2,” Opt. Commun. 2(9), 447–451 (1971).
[Crossref]

H. R. Philipp, “Optical properties of non-crystalline Si, SiO, SiOx and SiO2,” J. Phys. Chem. Solids 32(8), 1935–1945 (1971).
[Crossref]

1967 (1)

M. W. Williams, R. A. Macrae, and E. T. Arakawa, “Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[Crossref]

1964 (1)

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).

1962 (1)

1959 (1)

Altarelli, M.

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9(4), 1290–1298 (1974).
[Crossref]

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
[Crossref]

Arakawa, E. T.

W. F. Hanson, E. T. Arakawa, and M. W. Williams, “Optical properties of MgO and MgF2 in the extreme ultraviolet region,” J. Appl. Phys. 43(4), 1661–1665 (1972).
[Crossref]

M. W. Williams, R. A. Macrae, and E. T. Arakawa, “Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[Crossref]

Aznárez, J. A.

Barrière, A. S.

Baumeister, P.

Belsky, A. N.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Bischoff, M.

Bosch, S.

Bridou, F.

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

Chindaudom, P.

Chunyan, L.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Chuvilin, A.

Cockayne, D. J. H.

Cole, T. T.

Craighead, H. G.

Cui, Y.

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

Cuniot-Ponsard, M.

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

Danailov, M.

S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, and M. Danailov, “Storage ring free-electron lasing at 176 nm--dielectric mirror development for vacuum ultraviolet free-electron lasers,” Appl. Opt. 45(23), 5866–5870 (2006).
[Crossref] [PubMed]

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

Desvignes, J.-M.

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

Dexter, D. L.

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
[Crossref]

Dujardin, C.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Duparré, A.

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41(16), 3196–3204 (2002).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

Ershov, O. A.

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).

Fan, Z.

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

Fan, Z. X.

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

Ferré-Borrull, J.

Fukuda, T.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Gäbler, D.

Gacon, J. C.

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
[Crossref]

Garnier, N.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Gatto, A.

Görtz, B.

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

Gottwald, A.

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

Günster, S.

Günster, St.

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

Hanson, W. F.

W. F. Hanson, E. T. Arakawa, and M. W. Williams, “Optical properties of MgO and MgF2 in the extreme ultraviolet region,” J. Appl. Phys. 43(4), 1661–1665 (1972).
[Crossref]

Hass, G.

Heber, J.

H. Uhlig, R. Thielsch, J. Heber, and N. Kaiser, “Lanthanide tri-fluorides: a survey of the optical, mechanical and structural properties of thin films with emphasis of their use in the DUV – VUV- spectral range,” Proc. SPIE 5963, 59630N (2005).
[Crossref]

Hofmann, T.

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

Inokuti, M.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
[Crossref]

Jacquier, B.

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
[Crossref]

Jianda, S.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Kaiser, N.

Kaiser, U.

Kessler, H.

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

Kim, J.

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

Kiriakidis, G.

Ko, J. M.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Kolbe, J.

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

Krasilnikova, A. V.

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

Kroth, U.

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

Kui, Y.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Lachter, A.

Larruquert, J. I.

L. V. Rodríguez-de Marcos, J. A. Méndez, and J. I. Larruquert, “Tuning sum rules with window functions for optical constant evaluation,” J. Opt. 18(7), 075606 (2016).
[Crossref]

L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of SiO2 and Ta2O5 films,” Opt. Mater. Express 6(11), 3622–3637 (2016).
[Crossref]

Leavitt, J. A.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Lebbou, K.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Lehan, J. P.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Lei, C.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Lukirskii, A. P.

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).

Macleod, H. A.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Macrae, R. A.

M. W. Williams, R. A. Macrae, and E. T. Arakawa, “Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[Crossref]

Maloney, P. J.

Martin, P. J.

Masetti, E.

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41(16), 3196–3204 (2002).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

McIntyre, L. C.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

McKenzie, D. R.

Méndez, J. A.

L. V. Rodríguez-de Marcos, J. A. Méndez, and J. I. Larruquert, “Tuning sum rules with window functions for optical constant evaluation,” J. Opt. 18(7), 075606 (2016).
[Crossref]

L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of SiO2 and Ta2O5 films,” Opt. Mater. Express 6(11), 3622–3637 (2016).
[Crossref]

Messerly, M. J.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Meyer, F.

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

Moine, B.

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
[Crossref]

Netterfield, R. P.

Nussenzveig, H. M.

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
[Crossref]

Oppenheimer, F.

Pedrini, C.

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
[Crossref]

Peiró, F.

Philipp, H. R.

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43(6), 2835–2839 (1972).
[Crossref]

H. R. Philipp, “Optical properties of non-crystalline Si, SiO, SiOx and SiO2,” J. Phys. Chem. Solids 32(8), 1935–1945 (1971).
[Crossref]

Potoff, R. H.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Qi, H.

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

Quesnel, E.

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41(16), 3196–3204 (2002).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

Ramsey, J. B.

Ravel, G.

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

Richter, M.

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

Ristau, D.

S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, and M. Danailov, “Storage ring free-electron lasing at 176 nm--dielectric mirror development for vacuum ultraviolet free-electron lasers,” Appl. Opt. 45(23), 5866–5870 (2006).
[Crossref] [PubMed]

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41(16), 3196–3204 (2002).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

Rodríguez-de Marcos, L. V.

L. V. Rodríguez-de Marcos, J. A. Méndez, and J. I. Larruquert, “Tuning sum rules with window functions for optical constant evaluation,” J. Opt. 18(7), 075606 (2016).
[Crossref]

L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Self-consistent optical constants of SiO2 and Ta2O5 films,” Opt. Mater. Express 6(11), 3622–3637 (2016).
[Crossref]

Saini, S. M.

S. M. Saini, “The role of f-states in the electronic and optical properties of rare-earth trifluorides (RF3, R=Ce and Gd): a full potential study,” J. Mater. Sci. 47(21), 7665–7670 (2012).
[Crossref]

Sainty, W. G.

Sasaki, T.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
[Crossref]

Savinov, E. P.

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).

Schink, H.

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

Shao, J.

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

Shao, J. D.

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

Shen, Y.

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

Shepelev, Yu. F.

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).

Shiles, E.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
[Crossref]

Shuzhen, S.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Sie, S. H.

Smith, D.

Smith, D. Y.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
[Crossref]

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9(4), 1290–1298 (1974).
[Crossref]

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
[Crossref]

Spann, J. F.

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF(2), CaF(2), LaF(3), MgF(2), Al(2)O(3), HfO(2), and SiO(2) thin films,” Appl. Opt. 29(28), 4284–4292 (1990).
[Crossref] [PubMed]

Sweeney, J. E.

Targove, J. D.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Thielsch, R.

H. Uhlig, R. Thielsch, J. Heber, and N. Kaiser, “Lanthanide tri-fluorides: a survey of the optical, mechanical and structural properties of thin films with emphasis of their use in the DUV – VUV- spectral range,” Proc. SPIE 5963, 59630N (2005).
[Crossref]

Thun, R.

Tikhonravov, A.

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

Tonova, D.

Torr, D. G.

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF(2), CaF(2), LaF(3), MgF(2), Al(2)O(3), HfO(2), and SiO(2) thin films,” Appl. Opt. 29(28), 4284–4292 (1990).
[Crossref] [PubMed]

Torr, M. A.

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

Torr, M. R.

Trovó, M.

S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, and M. Danailov, “Storage ring free-electron lasing at 176 nm--dielectric mirror development for vacuum ultraviolet free-electron lasers,” Appl. Opt. 45(23), 5866–5870 (2006).
[Crossref] [PubMed]

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

Tünnermann, A.

Uhlig, H.

H. Uhlig, R. Thielsch, J. Heber, and N. Kaiser, “Lanthanide tri-fluorides: a survey of the optical, mechanical and structural properties of thin films with emphasis of their use in the DUV – VUV- spectral range,” Proc. SPIE 5963, 59630N (2005).
[Crossref]

Ullmann, J.

Vedam, K.

Venghaus, H.

H. Venghaus, “Energieverlustmessungen und Bestimmungoptischer Konstanten von MgO und MgF2,” Opt. Commun. 2(9), 447–451 (1971).
[Crossref]

von Blanckenhagen, B.

Wei, C.

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

Weng, C. C.

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

Williams, M. W.

W. F. Hanson, E. T. Arakawa, and M. W. Williams, “Optical properties of MgO and MgF2 in the extreme ultraviolet region,” J. Appl. Phys. 43(4), 1661–1665 (1972).
[Crossref]

M. W. Williams, R. A. Macrae, and E. T. Arakawa, “Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[Crossref]

Windt, D. L.

D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998), http://www.rxollc.com/idl/index.html .
[Crossref]

Wood, O. R.

Xue, C.

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

Yi, K.

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

Yu, H.

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

Zhengxiu, F.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Zukic, M.

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF(2), CaF(2), LaF(3), MgF(2), Al(2)O(3), HfO(2), and SiO(2) thin films,” Appl. Opt. 29(28), 4284–4292 (1990).
[Crossref] [PubMed]

Appl. Opt. (10)

S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, and M. Danailov, “Storage ring free-electron lasing at 176 nm--dielectric mirror development for vacuum ultraviolet free-electron lasers,” Appl. Opt. 45(23), 5866–5870 (2006).
[Crossref] [PubMed]

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41(16), 3196–3204 (2002).
[Crossref] [PubMed]

M. Zukic, D. G. Torr, J. F. Spann, and M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF(2), CaF(2), LaF(3), MgF(2), Al(2)O(3), HfO(2), and SiO(2) thin films,” Appl. Opt. 29(28), 4284–4292 (1990).
[Crossref] [PubMed]

D. Smith and P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18(1), 111–115 (1979).
[Crossref] [PubMed]

A. S. Barrière and A. Lachter, “Optical transitions in disordered thin films of the ionic compounds MgF(2) and AIF(3) as a function of their conditions of preparation,” Appl. Opt. 16(11), 2865–2871 (1977).
[Crossref] [PubMed]

O. R. Wood, H. G. Craighead, J. E. Sweeney, and P. J. Maloney, “Vacuum ultraviolet loss in magnesium fluoride films,” Appl. Opt. 23(20), 3644–3649 (1984).
[Crossref] [PubMed]

T. T. Cole and F. Oppenheimer, “Polarization by reflection and some optical constants in the extreme ultraviolet,” Appl. Opt. 1(6), 709–710 (1962).
[Crossref]

P. J. Martin, W. G. Sainty, R. P. Netterfield, D. R. McKenzie, D. J. H. Cockayne, S. H. Sie, O. R. Wood, and H. G. Craighead, “Influence of ion assistance on the optical properties of MgF(2).,” Appl. Opt. 26(7), 1235–1239 (1987).
[Crossref] [PubMed]

B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41(16), 3137–3141 (2002).
[Crossref] [PubMed]

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47(13), C157–C161 (2008).
[Crossref] [PubMed]

Appl. Surf. Sci. (2)

H. Yu, Y. Shen, Y. Cui, H. Qi, J. D. Shao, and Z. X. Fan, “Characterization of LaF3 coatings prepared at different temperatures and rates,” Appl. Surf. Sci. 254(6), 1783–1788 (2008).
[Crossref]

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nm Al2O3/ MgF2 mirrors,” Appl. Surf. Sci. 249(1-4), 157–161 (2005).
[Crossref]

Comput. Phys. (1)

D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998), http://www.rxollc.com/idl/index.html .
[Crossref]

J. Appl. Phys. (3)

W. F. Hanson, E. T. Arakawa, and M. W. Williams, “Optical properties of MgO and MgF2 in the extreme ultraviolet region,” J. Appl. Phys. 43(4), 1661–1665 (1972).
[Crossref]

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43(6), 2835–2839 (1972).
[Crossref]

M. W. Williams, R. A. Macrae, and E. T. Arakawa, “Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[Crossref]

J. Mater. Sci. (1)

S. M. Saini, “The role of f-states in the electronic and optical properties of rare-earth trifluorides (RF3, R=Ce and Gd): a full potential study,” J. Mater. Sci. 47(21), 7665–7670 (2012).
[Crossref]

J. Opt. (1)

L. V. Rodríguez-de Marcos, J. A. Méndez, and J. I. Larruquert, “Tuning sum rules with window functions for optical constant evaluation,” J. Opt. 18(7), 075606 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Solids (1)

H. R. Philipp, “Optical properties of non-crystalline Si, SiO, SiOx and SiO2,” J. Phys. Chem. Solids 32(8), 1935–1945 (1971).
[Crossref]

J. Phys. Condens. Matter (1)

C. Pedrini, B. Moine, J. C. Gacon, and B. Jacquier, “One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals,” J. Phys. Condens. Matter 4(24), 5461–5470 (1992).
[Crossref]

Opt. Commun. (2)

F. Bridou, M. Cuniot-Ponsard, J.-M. Desvignes, M. Richter, U. Kroth, and A. Gottwald, “Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs,” Opt. Commun. 283(7), 1351–1358 (2010).
[Crossref]

H. Venghaus, “Energieverlustmessungen und Bestimmungoptischer Konstanten von MgO und MgF2,” Opt. Commun. 2(9), 447–451 (1971).
[Crossref]

Opt. Eng. (1)

M. Zukic, D. G. Torr, J. Kim, J. F. Spann, and M. A. Torr, “Filters for the International Solar Terrestrial Physics Mission far-ultraviolet imager,” Opt. Eng. 32(12), 3069–3074 (1993).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

C. Dujardin, C. Pedrini, N. Garnier, A. N. Belsky, K. Lebbou, J. M. Ko, and T. Fukuda, “Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy,” Opt. Mater. 16(1-2), 69–76 (2001).
[Crossref]

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, “Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient,” Opt. Spectrosc. 16, 168–172 (1964).

Phys. Rev. B (3)

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and Sum Rules for the Optical Constants,” Phys. Rev. B 6(12), 4502–4509 (1972).
[Crossref]

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9(4), 1290–1298 (1974).
[Crossref]

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22(4), 1612–1628 (1980).
[Crossref]

Proc. SPIE (5)

J. D. Targove, M. J. Messerly, J. P. Lehan, C. C. Weng, R. H. Potoff, H. A. Macleod, L. C. McIntyre, and J. A. Leavitt, “Ion-assisted deposition of fluorides,” Proc. SPIE 678, 115–122 (1986).
[Crossref]

St. Günster, B. Görtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, and M. Danailov, “IBS deposition of dense fluoride coatings for the vacuum ultraviolet free electron laser,” Proc. SPIE 5963, 59630I (2005).
[Crossref]

H. Uhlig, R. Thielsch, J. Heber, and N. Kaiser, “Lanthanide tri-fluorides: a survey of the optical, mechanical and structural properties of thin films with emphasis of their use in the DUV – VUV- spectral range,” Proc. SPIE 5963, 59630N (2005).
[Crossref]

J. Kolbe, H. Kessler, T. Hofmann, F. Meyer, H. Schink, and D. Ristau, “Optical properties and damage thresholds of dielectric UV/VUV-coatings deposited by conventional evaporation, IAD and lBS,” Proc. SPIE 1624, 221–235 (1992).
[Crossref]

C. Xue, K. Yi, C. Wei, J. Shao, and Z. Fan, “Determination of optical constants in the VUV range for fluoride thin films,” Proc. SPIE 7283, 72831E (2009).
[Crossref]

Thin Solid Films (1)

A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, and D. Ristau, “Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry,” Thin Solid Films 397(1-2), 229–237 (2001).
[Crossref]

Other (6)

R. Thielsch, “Optical coatings for the DUV/VUV,” Optical Interference Coatings, N. Kaiser and H.-K. Pulker, eds., Vol. 88 of Springer Series in Optical Sciences (Springer, 2003), pp. 257–280.

L. J. Lingg, “Lanthanide trifluoride thin films: structure, composition, and optical properties,” Thesis, Univ. Arizona, 1990.

R. Thielsch, J. Heber, S. Jakobs, N. Kaiser, and A. Duparré, “Optical, structural and mechanical properties of lanthanide trifluoride thin film materials for use in the DUV-spectral region,” Optical Interference Coatings, Vol. 9 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 116–118.

http://henke.lbl.gov/optical_constants/ .

G. Stephan, M. Nisar, and A. Roth, “Spectre électronique du fluorure de lanthane dans l'ultraviolet extrême,” C. R. Acad. Sc. Paris, 274 B, 807–810 (1972).

Downloaded from the following web of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/Text/cover.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Comparison between the experimental measurements and calculations with MgF2 optical constants obtained in this subsection. a: transmittance (normalized to the transmittance of the bare MgF2 substrate) of a 44-nm thick film. b: reflectance of a 44-nm thick MgF2 film on a glass substrate
Fig. 2
Fig. 2 Ellipsometry measurements at 78° on a 44-nm thick MgF2 film deposited on a Si wafer, along with the fit performed with a single Lorentz oscillator and calculations with optical constants obtained in this subsection
Fig. 3
Fig. 3 Optical constants of MgF2 films deposited at 523 K (a: linear-axis; b: log-axis) versus wavelength in log scale.
Fig. 4
Fig. 4 Comparison between the experimental measurements and calculations with LaF3 optical constants obtained in this subsection. a: transmittance (normalized to the transmittance of the bare MgF2 substrate) of a 48-nm thick film; the inset highlights the 110-190 nm range. b: reflectance of a 48-nm thick film on a Si substrate. Wavelength is in log scale
Fig. 5
Fig. 5 Ellipsometry measurements at 74° on a 48-nm thick LaF3 film deposited on a Si wafer, along with the fit performed with a single Lorentz oscillator and calculations with optical constants obtained in this subsection
Fig. 6
Fig. 6 Optical constants of LaF3 films deposited at 523 K (a: linear axis; b: log-axis) versus wavelength in log scale.
Fig. 7
Fig. 7 Comparison between the experimental measurements and calculations with CeF3 optical constants obtained in this subsection. a: transmittance (normalized to the transmittance of the bare MgF2 substrate) of a 40-nm thick film vs. wavelength in log scale; the inset highlights the 110-300 nm range. b: reflectance of a 40-nm thick film on a glass substrate.
Fig. 8
Fig. 8 Ellipsometry measurements at 72° on a 40-nm thick CeF3 film deposited on a Si wafer, along with the fit performed with 5 Lorentz oscillators and calculations with the optical constants obtained in this subsection.
Fig. 9
Fig. 9 Optical constants of CeF3 films deposited at 523 K (a: linear axis; b: log-axis) versus wavelength in log scale.
Fig. 10
Fig. 10 The evaluation parameter ζ versus the central energy Ew for sum rules represented through Eqs. (12) to (16) calculated with H2 window function and with the optical constants of MgF2 (a), LaF3 (b), and CeF3 (c). The five inertial-like sum rules are identified in the legend with the power of photon energy in the integral. Window function parameters at each Ew are given by: Ew = (E1E2)0.5, E2/E1 = 3, and c1(2) = E1(2)/10. The suggested acceptable limits at ± 0.005 are also plotted
Fig. 11
Fig. 11 neff versus the central energy Ew for sum rule represented through Eq. (17) calculated with H1 window function and with the optical constants of MgF2, LaF3, and CeF3. Window function parameters at each Ew are given by: Ew = (E1E2)0.5, E2/E1 = 3, and c = E1/5

Tables (3)

Tables Icon

Table 1 Film thicknesses in nm obtained through different techniques

Tables Icon

Table 2 Scheme of the data sources for the iterative KK analysisa.

Tables Icon

Table 3 Parameters of the fits to ellipsometry data with Lorentz oscillatorsa defined as A λ 2 / ( λ 0 2 λ 2 + i γ λ )

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( E ) = E π P 0 ln [ R ( E ' ) ] E ' 2 E 2 d E '
n ( E ) 1 = 2 π P 0 E ' k ( E ' ) E ' 2 E 2 d E '
r = ( n + i k ) 1 ( n + i k ) + 1
n + i k = 1 + r 1 r
T f s T s = exp ( 4 π k z λ )
n e f f = 4 ε 0 m π N e 2 2 0 E ' k ( E ' ) d E '
0 [ n ( E ) 1 ] d E = 0
ζ = 0 [ n ( E ) 1 ] d E 0 | n ( E ) 1 | d E
H 1 ( E ) = 1 π [ L ( E ; E 2 , c ) L ( E ; E 1 , c ) ]
H 2 ( E ) = 1 π [ L ( E ; E 2 , c 2 ) + L ( E ; E 1 , c 1 ) 2 L ( E ; E 1 E 2 , c 1 + c 2 2 ) ]
L ( E ; E j , c ) ln ( E j 2 E 2 i c E ) j = 1 , 2
0 E ' 2 Re { H 2 ( E ' ) [ N ( E ' ) 1 ] } d E ' = 0
0 E ' 1 Im { H 2 ( E ' ) [ N ( E ' ) 1 ] } d E ' = 0
0 Re { H 2 ( E ' ) [ N ( E ' ) 1 ] } d E ' = 0
0 E ' Im { H 2 ( E ' ) [ N ( E ' ) 1 ] } d E ' = 0
0 E ' 2 Re { H 2 ( E ' ) [ N ( E ' ) 1 ] } d E ' = 0
n e f f = 4 m ε 0 2 N e 2 ( E 1 2 E 2 2 ) 0 E ' 3 Im { H 1 ( E ' ) [ N ( E ' ) 1 ] } d E '

Metrics