Abstract

A1.5 time enhancement of a 2.0 μm emission was achieved successfully in Yb3+/Ho3+ doped silica-germanate glass with a 0.1 mol% Ce3+ addition, which possesses a larger emission cross section (4.43 × 10−21 cm2). According to the measured absorption spectra, the Judd-Ofelt parameters and radiative properties were calculated and discussed. The energy transfer mechanisms existed in Ho3+, Yb3+ and Ce3+ ions were investigated based on absorption, upconversion and fluorescence spectra. Meanwhile, the decay profiles of several levels were measured to further examine the enhanced mid-infrared emissions. Moreover, a high energy transfer microscopic parameter (7.54 × 10−40cm6/s) of Yb3+→Ho3+ process was obtained when 0.1 mol% Ce3+ ions were introduced into the Ho3+/Yb3+ system. All results indicate that the Yb3+/Ho3+/Ce3+ tri-doped silica-germanate glass is a promising candidate material for improving the Ho3+ 2.0 μm fiber laser performance.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

28 February 2017: A correction was made to the title.


OSA Recommended Articles
Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

Highly efficient mid-infrared 2 μm emission in Ho3+/Yb3+-codoped germanate glass

Muzhi Cai, Beier Zhou, Fengchao Wang, Ying Tian, Jiajia Zhou, Shiqing Xu, and Junjie Zhang
Opt. Mater. Express 5(6) 1431-1439 (2015)

Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications

Feifei Huang, Jimeng Cheng, Xueqiang Liu, Lili Hu, and Danping Chen
Opt. Express 22(17) 20924-20935 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
    [Crossref] [PubMed]
  2. P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
    [Crossref]
  3. M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber DFB laser operating at 2.8 μm,” Opt. Lett. 40(1), 81–84 (2015).
    [Crossref] [PubMed]
  4. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  5. F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
    [Crossref] [PubMed]
  6. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
    [Crossref] [PubMed]
  7. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
    [Crossref]
  8. L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
    [Crossref]
  9. Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
    [Crossref]
  10. G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
    [Crossref]
  11. K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
    [Crossref] [PubMed]
  12. M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
    [Crossref]
  13. M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
    [Crossref]
  14. Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
    [Crossref]
  15. Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
    [Crossref]
  16. B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
    [Crossref]
  17. B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
    [Crossref]
  18. X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
    [Crossref]
  19. D. M. Shi, Y. G. Zhao, and X. F. Wang, “Enhanced 1.53-μm and lowered upconversion luminescence in Er3+-doped Ga2O3–GeO2–Bi2O3–Na2O glass by codoping rare earths,” Physica B 406(13), 2588–2593 (2011).
    [Crossref]
  20. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
    [Crossref]
  21. T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
    [Crossref]
  22. J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
    [Crossref]
  23. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [Crossref] [PubMed]
  24. S. D. Jackson and S. Mossman, “Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-microm,” Appl. Opt. 42(18), 3546–3549 (2003).
    [Crossref] [PubMed]
  25. Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
    [Crossref]
  26. S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
    [Crossref]
  27. T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
    [Crossref]
  28. T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
    [Crossref]
  29. X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen, and J. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett. 34(22), 3565–3567 (2009).
    [Crossref] [PubMed]
  30. T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
    [Crossref]
  31. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  32. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  33. R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
    [Crossref]
  34. Q. Zhang, J. Ding, Y. L. Shen, G. Zhang, G. Lin, J. R. Qiu, and D. P. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27(5), 975–980 (2010).
    [Crossref]
  35. P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
    [Crossref]
  36. M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
    [Crossref]
  37. P. Nachimuthu and R. Jagannathan, “Judd–Ofelt parameters, hypersensitivity, and emission characteristics of Ln3+ (Nd3+, Ho3+, and Er3+) ions doped in PbO–PbF2 glasses,” J. Am. Ceram. Soc. 82(2), 387–392 (1999).
    [Crossref]
  38. L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
    [Crossref]
  39. Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
    [Crossref]
  40. R. Cao, M. Cai, Y. Lu, Y. Tian, F. Huang, S. Xu, and J. Zhang, “Ho3+/Yb3+ codoped silicate glasses for 2 μm emission performances,” Appl. Opt. 55(8), 2065–2070 (2016).
    [Crossref] [PubMed]
  41. J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
    [Crossref]
  42. P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino–germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008).
    [Crossref]
  43. J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass,” Appl. Opt. 34(21), 4284–4289 (1995).
    [Crossref] [PubMed]
  44. G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
    [Crossref]
  45. Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
    [Crossref]
  46. S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  47. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  48. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  49. X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
    [Crossref]
  50. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
    [Crossref]
  51. L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth- doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
    [Crossref]

2016 (5)

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

R. Cao, M. Cai, Y. Lu, Y. Tian, F. Huang, S. Xu, and J. Zhang, “Ho3+/Yb3+ codoped silicate glasses for 2 μm emission performances,” Appl. Opt. 55(8), 2065–2070 (2016).
[Crossref] [PubMed]

2015 (3)

M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber DFB laser operating at 2.8 μm,” Opt. Lett. 40(1), 81–84 (2015).
[Crossref] [PubMed]

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

2014 (4)

T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
[Crossref]

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

2013 (4)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

2012 (6)

R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
[Crossref]

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
[Crossref]

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (3)

D. M. Shi, Y. G. Zhao, and X. F. Wang, “Enhanced 1.53-μm and lowered upconversion luminescence in Er3+-doped Ga2O3–GeO2–Bi2O3–Na2O glass by codoping rare earths,” Physica B 406(13), 2588–2593 (2011).
[Crossref]

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

2010 (2)

Q. Zhang, J. Ding, Y. L. Shen, G. Zhang, G. Lin, J. R. Qiu, and D. P. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27(5), 975–980 (2010).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

2009 (7)

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen, and J. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett. 34(22), 3565–3567 (2009).
[Crossref] [PubMed]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

2008 (2)

P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino–germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

2007 (2)

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

2005 (1)

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
[Crossref]

2003 (1)

2002 (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

2000 (1)

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[Crossref]

1999 (1)

P. Nachimuthu and R. Jagannathan, “Judd–Ofelt parameters, hypersensitivity, and emission characteristics of Ln3+ (Nd3+, Ho3+, and Er3+) ions doped in PbO–PbF2 glasses,” J. Am. Ceram. Soc. 82(2), 387–392 (1999).
[Crossref]

1997 (1)

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth- doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

1995 (2)

J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass,” Appl. Opt. 34(21), 4284–4289 (1995).
[Crossref] [PubMed]

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

1992 (1)

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Aggarwal, I. D.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
[Crossref]

Annapurna, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Babu, P.

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

Bai, G. X.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

Bayya, S. S.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
[Crossref]

Bernier, M.

Binks, D.

Biswas, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Bugge, F.

Cai, M.

Cai, M. Z.

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

Calveza, L.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Cao, R.

Cao, R. J.

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

Chang, J.-S.

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

Chase, L.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, D.

Chen, D. P.

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Q. Zhang, J. Ding, Y. L. Shen, G. Zhang, G. Lin, J. R. Qiu, and D. P. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27(5), 975–980 (2010).
[Crossref]

Chen, F. Z.

T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
[Crossref]

Chen, J.-Z.

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

Chen, X. D.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Chen, Y. K.

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

Cheng, J.

Cheng, J. M.

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

Cheng, P.

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

Chengaiah, T.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
[Crossref]

Chien, H.-W.

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

Chin, G. D.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
[Crossref]

Cho, C.-H.

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

Choi, Y. G.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[Crossref]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Ding, J.

Dong, G.

Erbert, G.

Fan, J. T.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Fan, X. K.

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

Fan, Y. Y.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Fang, Y. Z.

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Feng, S. Y.

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

Fortin, V.

Gao, G. J.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Gao, S.

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

Genest, J.

Gomes, L.

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth- doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Guo, Y. Y.

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

Han, W.-T.

P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino–germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008).
[Crossref]

He, J. L.

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

Heo, J.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[Crossref]

J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass,” Appl. Opt. 34(21), 4284–4289 (1995).
[Crossref] [PubMed]

Hu, L.

Hu, L. L.

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
[Crossref]

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Huang, B.

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

Huang, F.

Huang, F. F.

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

Huang, L. H.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

S. D. Jackson and S. Mossman, “Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-microm,” Appl. Opt. 42(18), 3546–3549 (2003).
[Crossref] [PubMed]

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Jagannathan, R.

P. Nachimuthu and R. Jagannathan, “Judd–Ofelt parameters, hypersensitivity, and emission characteristics of Ln3+ (Nd3+, Ho3+, and Er3+) ions doped in PbO–PbF2 glasses,” J. Am. Ceram. Soc. 82(2), 387–392 (1999).
[Crossref]

Jang, J. N.

Jang, K. H.

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

Jayasankar, C. K.

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

Jha, A.

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Jiang, S. B.

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

Jin, W.

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

Jing, X. F.

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

Ju, S.

P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino–germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kesavulu, C. R.

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

Kim, K. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[Crossref]

Krupke, W. F.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kway, W. L.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Lee, Y.-W.

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

Levasseur, S.

Li, J.

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

Li, M.

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

Lin, A. X.

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

Lin, G.

Lin, H.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Lin, L.

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Liu, W. W.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Liu, X.

Liu, X. Q.

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

Liu, Z. J.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Lousteau, J.

Lu, Y.

R. Cao, M. Cai, Y. Lu, Y. Tian, F. Huang, S. Xu, and J. Zhang, “Ho3+/Yb3+ codoped silicate glasses for 2 μm emission performances,” Appl. Opt. 55(8), 2065–2070 (2016).
[Crossref] [PubMed]

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

Lü, H.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Ma, Z. F.

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Michaud-Belleau, V.

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Moorthy, L. R.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
[Crossref]

Mossman, S.

Nachimuthu, P.

P. Nachimuthu and R. Jagannathan, “Judd–Ofelt parameters, hypersensitivity, and emission characteristics of Ln3+ (Nd3+, Ho3+, and Er3+) ions doped in PbO–PbF2 glasses,” J. Am. Ceram. Soc. 82(2), 387–392 (1999).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Park, S. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[Crossref]

Pavani, K.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
[Crossref]

Payne, S. A.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Pun, E. Y. B.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Qian, Q.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Qiao, Y.

Qiu, J.

Qiu, J. R.

Ranieri, I. M.

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth- doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Richards, B.

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Sanghera, J. S.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
[Crossref]

Sasikala, T.

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
[Crossref]

Sen, R.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Seo, H. J.

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

Shen, Y. L.

Shi, D. M.

D. M. Shi, Y. G. Zhao, and X. F. Wang, “Enhanced 1.53-μm and lowered upconversion luminescence in Er3+-doped Ga2O3–GeO2–Bi2O3–Na2O glass by codoping rare earths,” Physica B 406(13), 2588–2593 (2011).
[Crossref]

Shin, Y. B.

Smith, L. K.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Sontakke, A. D.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Sun, M.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Tang, G. W.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Tao, L. L.

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

Tarelho, L. V. G.

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth- doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Teng, Y.

Tian, C.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

Tian, Y.

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

R. Cao, M. Cai, Y. Lu, Y. Tian, F. Huang, S. Xu, and J. Zhang, “Ho3+/Yb3+ codoped silicate glasses for 2 μm emission performances,” Appl. Opt. 55(8), 2065–2070 (2016).
[Crossref] [PubMed]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
[Crossref]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Tsang, Y.

Tsang, Y. H.

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

Vallée, R.

Wang, G. N.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

Wang, M.

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

Wang, X.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Wang, X. F.

D. M. Shi, Y. G. Zhao, and X. F. Wang, “Enhanced 1.53-μm and lowered upconversion luminescence in Er3+-doped Ga2O3–GeO2–Bi2O3–Na2O glass by codoping rare earths,” Physica B 406(13), 2588–2593 (2011).
[Crossref]

Wang, X. Y.

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Watekar, P. R.

P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino–germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008).
[Crossref]

Wei, T.

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
[Crossref]

Wen, X.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Xie, J.

Xu, J. Y.

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Xu, R. R.

R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
[Crossref]

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Xu, S.

Xu, S. Q.

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
[Crossref]

Yang, D. L.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Yang, Y.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Yang, Z. M.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Yi, L. X.

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

Ying, T.

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Yu, C. L.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Zhan, H.

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

Zhang, A. D.

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

Zhang, G.

Zhang, J.

Zhang, J. J.

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
[Crossref]

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Zhang, L.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Zhang, L. Y.

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Zhang, N.

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Zhang, Q.

Zhang, X. H.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

Zhao, G. Y.

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Zhao, Y. G.

D. M. Shi, Y. G. Zhao, and X. F. Wang, “Enhanced 1.53-μm and lowered upconversion luminescence in Er3+-doped Ga2O3–GeO2–Bi2O3–Na2O glass by codoping rare earths,” Physica B 406(13), 2588–2593 (2011).
[Crossref]

Zhou, B.

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Zhou, P.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Zhou, Y. X.

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

Zhou, Z. G.

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

Zhou, Z. Z.

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

Zhu, T. T.

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Zhuang, Y.

Appl. Opt. (3)

Appl. Phys. (Berl.) (1)

R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” Appl. Phys. (Berl.) 111(3), 033524 (2012).
[Crossref]

Ceram. Int. (1)

Y. Z. Fang, G. Y. Zhao, J. Y. Xu, N. Zhang, Z. F. Ma, and L. L. Hu, “Energy transferand 1.8 μm emissioninYb3+/Tm3+ co-doped bismuth germanate glass,” Ceram. Int. 40(4), 6037–6043 (2014).
[Crossref]

Fibers. (1)

Y.-W. Lee, H.-W. Chien, C.-H. Cho, J.-Z. Chen, J.-S. Chang, and S. B. Jiang, “Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers,” Fibers. 1(3), 82–92 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. Alloys Compd. (2)

T. Sasikala, L. R. Moorthy, K. Pavani, and T. Chengaiah, “Spectroscopic properties of Er3+ and Ce3+ co-doped tellurite glasses,” J. Alloys Compd. 542(25), 271–275 (2012).
[Crossref]

G. W. Tang, X. Wen, Q. Qian, T. T. Zhu, W. W. Liu, M. Sun, X. D. Chen, and Z. M. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

P. Nachimuthu and R. Jagannathan, “Judd–Ofelt parameters, hypersensitivity, and emission characteristics of Ln3+ (Nd3+, Ho3+, and Er3+) ions doped in PbO–PbF2 glasses,” J. Am. Ceram. Soc. 82(2), 387–392 (1999).
[Crossref]

J. Appl. Phys. (5)

M. Li, X. Q. Liu, Y. Y. Guo, L. L. Hu, and J. J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2 μm emission,” J. Appl. Phys. 114(24), 243501 (2013).
[Crossref]

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

X. Y. Wang, H. Lin, D. L. Yang, L. Lin, and E. Y. B. Pun, “Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses,” J. Appl. Phys. 101(11), 113535 (2007).
[Crossref]

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000).
[Crossref]

T. Ying, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Lumin. (4)

P. Babu, H. J. Seo, C. R. Kesavulu, K. H. Jang, and C. K. Jayasankar, “Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses,” J. Lumin. 129(5), 444–448 (2009).
[Crossref]

J. L. He, Z. G. Zhou, H. Zhan, A. D. Zhang, and A. X. Lin, “2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” J. Lumin. 145, 507–511 (2014).
[Crossref]

X. Q. Liu, F. F. Huang, J. M. Cheng, X. K. Fan, S. Gao, J. J. Zhang, L. L. Hu, and D. P. Chen, “Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 μm fiber lasers,” J. Lumin. 162, 197–202 (2015).
[Crossref]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

J. Non-Cryst. Solids (3)

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11–12), 2431–2434 (2011).
[Crossref]

P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino–germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008).
[Crossref]

L. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. RA. (3)

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. RA. 161, 95–104 (2015).
[Crossref]

M. Li, Y. Y. Guo, G. X. Bai, Y. Tian, L. L. Hu, and J. J. Zhang, “~2 μm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass,” J. Quant. Spectrosc. RA. 127, 70–77 (2013).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. RA. 113(1), 87–95 (2012).
[Crossref]

Laser Photonics Rev. (1)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

Laser Phys. (1)

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. J. Liu, “Review on Recent Progress on Mid-Infrared Fiber Lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Mater. Res. Bull. (2)

Y. Tian, T. Wei, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+ doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Y. Lu, M. Z. Cai, R. J. Cao, Y. Tian, F. F. Huang, S. Q. Xu, and J. J. Zhang, “Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material,” Mater. Res. Bull. 84, 124–131 (2016).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

T. Wei, F. Z. Chen, Y. Tian, and S. Q. Xu, “Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier,” Opt. Commun. 315, 199–203 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (4)

B. Huang, Y. X. Zhou, P. Cheng, Z. Z. Zhou, J. Li, and W. Jin, “Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material,” Opt. Mater. 60, 341–349 (2016).
[Crossref]

L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+: 5I7 →5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mater. 31(11), 1586–1590 (2009).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Phys. Rev. (2)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (2)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth- doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Physica B (1)

D. M. Shi, Y. G. Zhao, and X. F. Wang, “Enhanced 1.53-μm and lowered upconversion luminescence in Er3+-doped Ga2O3–GeO2–Bi2O3–Na2O glass by codoping rare earths,” Physica B 406(13), 2588–2593 (2011).
[Crossref]

Proc. SPIE (1)

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “VIS-IR Transmitting windows,” Proc. SPIE 5786, 262–271 (2005).
[Crossref]

Solid State Commun. (1)

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29–30), 1216–1220 (2009).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Absorption spectra of H, YHC0 and YHC0.1 glasses.
Fig. 2
Fig. 2 Fluorescence spectra of YHC (0, 0.1, 0.25, 0.5) glasses. Insets in Fig. 2 show the decay curves of the YHC0 and YHC0.1 at 1200 and 2055 nm.
Fig. 3
Fig. 3 Upconversion spectra of YHC (0, 0.1, 0.25, 0.5) glasses.
Fig. 4
Fig. 4 Energy level diagrams and energy transfer mechanism among Yb3+, Ho3+ and Ce3+ ions.
Fig. 5
Fig. 5 (a) The calculated absorption and emission cross sections (b) Gain coefficient for prepared glass (YHC0.1).

Tables (4)

Tables Icon

Table 1 Measured (fmea) and calculated (fcal) oscillator strengths of H sample and compared with other systems.

Tables Icon

Table 2 J–O intensity parameters Ωλ (λ = 2, 4, 6) ( × 10−20 cm2) of Ho3+ ions in various glass hosts.

Tables Icon

Table 3 The calculated radiative transition probability (Arad), fluorescence branching ratios (β) and radiative lifetimes (τrad) of Ho3+ ions for different transitions.

Tables Icon

Table 4 Calculated microscopic parameters CD-A ( × 10−40 cm6/s) for Yb3+→Ho3+ energy transfer in YHC0 and YHC0.1 glasses. The number # of phonons necessary to assist the energy transfer process is also revealed with their percent contributions.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ e m ( λ ) = λ 4 A r a d 8 π c n 2 × λ I ( λ ) λ I ( λ ) d λ
σ e m ( λ ) = σ a b s ( λ ) × Z l Z u × exp [ h c k t × ( 1 λ Z L 1 λ ) ]
G ( λ ) = N [ P σ e m ( λ ) ( 1 P ) σ a b s ( λ ) ]
W D A = ( 2 π ) | H D A | 2 S D A N
S D A N e ( S 0 D + S 0 A ) × [ ( S 0 D + S 0 A ) N N ! ] S D A ( 0 , 0 , E ) δ ( N , Δ E / w 0 )
S D A ( m , 0 , E ) = [ S 0 m m ! e S 0 g e m i s D ( E Δ E ) ] g a b s A ( E ) d E
σ e m i s ( m p h o n o n ) D = σ e m i s D ( λ m + ) S 0 m e S 0 m ! ( n ¯ + 1 ) m σ e m i s D ( E E 1 )
σ a b s ( k p h o n o n ) A = σ a b s A ( λ k ) S 0 k e S 0 k ! ( n ¯ ) k σ a b s A ( E + E 2 )
λ m + = 1 / ( 1 / λ m w 0 )
λ k = 1 / ( 1 / λ + k w 0 )
W D A ( R ) = 6 c g l o w D ( 2 π ) 4 n 2 R 6 g u p D m = 0 e ( 2 n ¯ + 1 ) S 0 S 0 m m ! × ( n ¯ + 1 ) m σ e m i s D ( λ m + ) σ a b s A ( λ ) d λ = C D A R 6
C D A = 6 c g l o w D ( 2 π ) 4 n 2 g u p D m = 0 e ( 2 n ¯ + 1 ) S 0 S 0 m m ! × ( n ¯ + 1 ) m σ e m i s D ( λ m + ) σ a b s A ( λ ) d λ

Metrics