Abstract

The reflection notch of cholesteric liquid crystals can be controlled using near infrared light (NIR) irradiation, and is demonstrated in this work. Opto-thermal tuning of a liquid crystal mixture near a SmA → CLC transition is achieved through use of a NIR absorbing dye, PBIBDF-BT, which can yield large changes in the spectral reflection. Compared to ultraviolet (UV) and visible light, employing NIR light is beneficial because of its invisibility, outstanding penetration for temporal and spatial remote activation of materials, and more. A simple fabrication method involving the addition of infrared absorbing dye into one of the alignment layers of a liquid crystal cell is presented. The tuning range and speed are dependent on the NIR light power, wavelength, and infrared absorbing dye concentration. Furthermore, RGB3-element color can be achieved by adjusting the NIR light power.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound

H. B. Lu, X. Y. Xie, J. Xing, C. Xu, Z. Q. Wu, G. B. Zhang, G. Q. Lv, and L. Z. Qiu
Opt. Mater. Express 6(10) 3145-3158 (2016)

Spatially tunable emissions of dye-doped liquid crystal lasers between the cholesteric and smectic phases

Ja-Hon Lin, Kuan-Cheng Liao, Li-Hao Jian, Shwu-Yun Tsay, Jin-Jei Wu, and Yeh-Gang Duann
Opt. Mater. Express 5(10) 2142-2149 (2015)

Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility

Yuhua Huang, Ying Zhou, Charlie Doyle, and Shin-Tson Wu
Opt. Express 14(3) 1236-1242 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [PubMed]
  2. N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
  3. T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
  4. H. B. Lu, X. Y. Xie, J. Xing, C. Xu, Z. Q. Wu, and G. B. Zhang, “Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound,” Opt. Mater. Express 6(10), 3145–3158 (2016).
  5. N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
  6. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
  7. S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
    [PubMed]
  8. T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
    [PubMed]
  9. N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).
  10. M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).
  11. S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
    [PubMed]
  12. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
  13. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
    [PubMed]
  14. J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer underbiaxial stress,” Macromolecules 38(4), 1357–1363 (2005).
  15. M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707 (2008).
  16. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
  17. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
    [PubMed]
  18. D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
  19. Y. Wang and Q. Li, “Light - Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
    [PubMed]
  20. Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
    [PubMed]
  21. R. Eelkema and B. L. Feringa, “Amplification of Chirality in Liquid Crystals,” Org. Biomol. Chem. 4(20), 3729–3745 (2006).
    [PubMed]
  22. S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
    [PubMed]
  23. H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
    [PubMed]
  24. Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
    [PubMed]
  25. L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
    [PubMed]

2016 (1)

2015 (1)

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

2013 (3)

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

2012 (5)

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

Y. Wang and Q. Li, “Light - Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[PubMed]

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[PubMed]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

2010 (4)

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[PubMed]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).

2008 (1)

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707 (2008).

2007 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).

2006 (2)

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

R. Eelkema and B. L. Feringa, “Amplification of Chirality in Liquid Crystals,” Org. Biomol. Chem. 4(20), 3729–3745 (2006).
[PubMed]

2005 (1)

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer underbiaxial stress,” Macromolecules 38(4), 1357–1363 (2005).

2003 (1)

2001 (2)

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).

1999 (1)

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).

1998 (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).

1994 (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).

Abraham, S.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

Akagi, K.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

Asshoff, S. J.

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

Bisoyi, H. K.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Bosco, A.

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

Bricker, R. L.

Bunning, T. J.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[PubMed]

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).

Choi, H.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707 (2008).

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).

Cornelissen, J. J.

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

Das, S.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

Donane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).

Dong, H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Eelkema, R.

R. Eelkema and B. L. Feringa, “Amplification of Chirality in Liquid Crystals,” Org. Biomol. Chem. 4(20), 3729–3745 (2006).
[PubMed]

Feringa, B. L.

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

R. Eelkema and B. L. Feringa, “Amplification of Chirality in Liquid Crystals,” Org. Biomol. Chem. 4(20), 3729–3745 (2006).
[PubMed]

Ferrarini, A.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).

Finkelmann, H.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer underbiaxial stress,” Macromolecules 38(4), 1357–1363 (2005).

Fu, K.-Y.

Furumi, S.

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[PubMed]

Green, L.

Hayasaka, H.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).

Huang, C.-Y.

Iamsaard, S.

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

Jeong, M. Y.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707 (2008).

Katsonis, N.

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).

Kniesel, S.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer underbiaxial stress,” Macromolecules 38(4), 1357–1363 (2005).

Kosa, T.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

Kruk, G.

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).

Kuwada, K.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

Lacaze, E.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).

Li, Q.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Y. Wang and Q. Li, “Light - Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[PubMed]

Li, Y.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Liu, R.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Lo, K.-Y.

Lu, H. B.

Mallia, V. A.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

Matsuda, H.

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).

McCounney, M. E.

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).

Mitov, M.

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[PubMed]

Miyashita, T.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

Moriyama, M.

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).

Nakayama, M.

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

Natarajan, L. V.

Ratheesh, K. V.

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

Schmidtke, J.

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer underbiaxial stress,” Macromolecules 38(4), 1357–1363 (2005).

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).

Song, S.

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).

Su, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

Sukhomlinova, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

Sun, L. D.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).

Taheri, B.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

Tamaoki, N.

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[PubMed]

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).

Tondiglia, V. P.

Tsai, M. S.

Urbas, A.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Wang, L.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Wang, M.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Wang, Y.

Y. Wang and Q. Li, “Light - Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[PubMed]

Wang, Y. F.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).

White, T. J.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[PubMed]

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).

Wu, J. W.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707 (2008).

Wu, Z. Q.

Xie, X. Y.

Xing, J.

Xu, C.

Xue, C.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Yan, C. H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Yang, D. K.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).

Zhang, G. B.

Adv. Funct. Mater. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).

Adv. Mater. (5)

S. Furumi and N. Tamaoki, “Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser,” Adv. Mater. 22(8), 886–891 (2010).
[PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[PubMed]

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).

Y. Wang and Q. Li, “Light - Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[PubMed]

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[PubMed]

Angew. Chem. Int. Ed. Engl. (2)

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(51), 13703–13707 (2013).
[PubMed]

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 52(34), 8925–8929 (2013).
[PubMed]

Appl. Phys. Lett. (1)

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707 (2008).

Chem. Commun. (Camb.) (1)

S. J. Asshoff, S. Iamsaard, A. Bosco, J. J. Cornelissen, B. L. Feringa, and N. Katsonis, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[PubMed]

J. Am. Chem. Soc. (2)

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, and K. Akagi, “Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants,” J. Am. Chem. Soc. 134(8), 3758–3765 (2012).
[PubMed]

S. Abraham, V. A. Mallia, K. V. Ratheesh, N. Tamaoki, and S. Das, “Reversible thermal and photochemical switching of liquid crystalline phases and luminescence in diphenylbutadiene-based mesogenic dimers,” J. Am. Chem. Soc. 128(23), 7692–7698 (2006).
[PubMed]

J. Appl. Phys. (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Donane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).

J. Mater. Chem. (4)

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).

T. J. White, M. E. McCounney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).

N. Tamaoki, G. Kruk, and H. Matsuda, “Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid,” J. Mater. Chem. 9(10), 2381–2384 (1999).

M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, “Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilization for full-colour image recording,” J. Mater. Chem. 11(4), 1003–1010 (2001).

Macromolecules (1)

J. Schmidtke, S. Kniesel, and H. Finkelmann, “Probing the photonic properties of a cholesteric elastomer underbiaxial stress,” Macromolecules 38(4), 1357–1363 (2005).

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).

Nature (2)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485(7398), 347–349 (2012).
[PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Org. Biomol. Chem. (1)

R. Eelkema and B. L. Feringa, “Amplification of Chirality in Liquid Crystals,” Org. Biomol. Chem. 4(20), 3729–3745 (2006).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The structure of: (a) the chiral dopant, S811, and (b) the infrared absorbing material, PBIBDF-BT.
Fig. 2
Fig. 2 (a) DSC curves of the S811/E7 mixtures at a 1 °C/min cooling rate. (b) LC textures for the S811 30 wt% mixture were recorded with crossed polarizers at 26 °C and 30 °C.
Fig. 3
Fig. 3 (a) The CLC cell (S811 30 wt%) transmission spectra as functions of temperature. (b) A plot of the central wavelength of the cell versus the temperature.
Fig. 4
Fig. 4 (a) The transmission spectra of the CLC cell as functions of 850 nm NIR light irradiation time. (b) Bragg wavelength as functions of irradiation time for different NIR wavelengths.
Fig. 5
Fig. 5 (a) Bragg wavelength as a function of irradiation time for different light intensities. (b) Bragg wavelength as a function of NIR irradiation time for different PBIBDF-BT concentrations. (30 wt% S811 + E7).
Fig. 6
Fig. 6 Bragg wavelength as a function of 850 nm NIR irradiation time for different light intensities. (30 wt% S811 + 0.5 wt% S6N + E7).
Fig. 7
Fig. 7 (a) The transmission spectra of CLC cell (S811 20 wt %). (b) LC texture of the S811 20 wt% mixture was recorded using crossed polarizers at room temperature.
Fig. 8
Fig. 8 The CLC cell transmission spectra as functions of 940 nm light at different NIR irradiation times.
Fig. 9
Fig. 9 Absorption spectra of PBIBDF-BT coated on a quartz glass substrate.
Fig. 10
Fig. 10 (a) Differential scanning calorimetry study of 30% S811 + 0.5% S6N + E7 compositions. (b) The transmission spectra as functions of 850nm NIR irradiation with spin-coated PBIBDF-BT.

Metrics