Abstract

Engineering the optical properties of waveguides is important for the optimization of their guided optical mode characteristics. Here, we document the dynamic control of the refractive index and composition of crystalline films, via the substrate temperature, during pulsed-laser-deposition growth of Er(1%)-doped yttrium gallium garnet on <100>-orientated single-crystal yttrium aluminium garnet. An increasing substrate temperature is observed to reduce the gallium content in the grown film, with a corresponding reduction of refractive index. We demonstrate the ability to accurately control the refractive index via this technique and use it to grow a complex multi-core crystal waveguide. Our results highlight the potential of using pulsed laser deposition to fabricate crystal films with bespoke optical properties and thus engineer passive and active waveguide devices in situ.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Pulsed laser deposition of high-quality μm-thick YIG films on YAG

A. Sposito, T. C. May-Smith, G. B. G. Stenning, P. A. J. de Groot, and R. W. Eason
Opt. Mater. Express 3(5) 624-632 (2013)

An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition

James A. Grant-Jacob, Stephen J. Beecher, Tina L. Parsonage, Ping Hua, Jacob I. Mackenzie, David P. Shepherd, and Robert W. Eason
Opt. Mater. Express 6(1) 91-96 (2016)

Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered Combinatorial Pulsed Laser Deposition

Katherine A. Sloyan, Timothy C. May-Smith, Michalis Zervas, Robert W. Eason, Steven Huband, David Walker, and Pamela A. Thomas
Opt. Express 18(24) 24679-24687 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1(11), e38 (2012).
    [Crossref]
  2. Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
    [Crossref] [PubMed]
  3. D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
    [Crossref]
  4. A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
    [Crossref] [PubMed]
  5. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, “Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films,” J. Opt. Soc. Am. B 20(9), 1844–1852 (2003).
    [Crossref]
  6. S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
    [Crossref] [PubMed]
  7. J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
    [Crossref]
  8. J. Lancok, M. Jelinek, and F. Flory, “Optical properties of PLD-created Nd:YAG and Nd:YAP planar waveguide thin films,” in P. A. Atanasov and D. V. Stoyanov, eds. (SPIE, 1999), Vol. 3571, p. 364.
  9. T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
    [Crossref]
  10. J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Engineering of thin crystal layers grown by pulsed laser deposition,” in Proc. SPIE 9893, Laser Sources and Applications III, J. I. Mackenzie, H. JelÍnková, T. Taira, and M. Abdou Ahmed, eds. (SPIE, 2016), Vol. 9893, p. 98930E.
  11. J. I. Mackenzie, J. A. Grant-Jacob, S. Beecher, H. Riris, A. W. Yu, D. P. Shepherd, and R. W. Eason, “Er:YGG planar waveguides grown by pulsed laser deposition for LIDAR applications,” in Proc. SPIE, Solid State Lasers XXVI: Technology and Devices, W. A. Clarkson and R.K. Shori, eds. (SPIE, 2017), 10082, p. 100820A.
  12. T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).
  13. H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
    [Crossref] [PubMed]
  14. R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
    [Crossref]
  15. T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
    [Crossref] [PubMed]
  16. A. Sposito, “Pulsed laser deposition of thin film magneto-optic materials and lasing waveguides,” Ph.D. thesis, University of Southampton (2014).
  17. 23848, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .
  18. 14343, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .
  19. 82420, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .
  20. 39186, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .
  21. Y. Nigara, “Measurement of the Optical Constants of Yttrium Oxide,” Jpn. J. Appl. Phys. 7(4), 404–408 (1968).
    [Crossref]
  22. K. Enke and W. Tolksdorf, “Continuously recording refractive index spectrograph for transparent and opaque insulators and semiconductors,” Rev. Sci. Instrum. 49(12), 1625–1628 (1978).
    [Crossref] [PubMed]
  23. P. Hertel, Continuum Physics, Graduate Texts in Physics (Springer Berlin Heidelberg, 2012).

2016 (2)

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
[Crossref]

2014 (1)

2012 (2)

2009 (1)

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

2008 (1)

2004 (1)

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

2003 (1)

1997 (1)

1996 (1)

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

1978 (1)

K. Enke and W. Tolksdorf, “Continuously recording refractive index spectrograph for transparent and opaque insulators and semiconductors,” Rev. Sci. Instrum. 49(12), 1625–1628 (1978).
[Crossref] [PubMed]

1968 (1)

Y. Nigara, “Measurement of the Optical Constants of Yttrium Oxide,” Jpn. J. Appl. Phys. 7(4), 404–408 (1968).
[Crossref]

Abshire, J. B.

Anderson, A. A.

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

Ando, T.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Asaka, K.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Beecher, S. J.

Chen, R. T.

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Darby, M. S. B.

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[Crossref] [PubMed]

Dawsey, M.

Eason, R. W.

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
[Crossref]

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express 22(18), 22056–22061 (2014).
[Crossref] [PubMed]

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[Crossref] [PubMed]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

Enke, K.

K. Enke and W. Tolksdorf, “Continuously recording refractive index spectrograph for transparent and opaque insulators and semiconductors,” Rev. Sci. Instrum. 49(12), 1625–1628 (1978).
[Crossref] [PubMed]

Fan, D.

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Gazia, R.

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

Gill, D. S.

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

Grant-Jacob, J. A.

Grivas, C.

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

Healy, M. J. F.

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

Hickey, L. M. B.

Hirano, Y.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Hua, P.

Inokuchi, H.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Jelinek, M.

Kameyama, S.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Kawa, R.

Li, S.

Luther-Davies, B.

Mackenzie, J. I.

Mao, J.

May-Smith, T. C.

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[Crossref] [PubMed]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

Muir, A. C.

Nigara, Y.

Y. Nigara, “Measurement of the Optical Constants of Yttrium Oxide,” Jpn. J. Appl. Phys. 7(4), 404–408 (1968).
[Crossref]

Numata, K.

Parsonage, T. L.

Ramanathan, A.

Riris, H.

Rode, A. V.

Ruan, Y.

Sakimura, T.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Samoc, M.

Shepherd, D. P.

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
[Crossref]

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

Sloyan, K. A.

Subbaraman, H.

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Tanaka, H.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Tolksdorf, W.

K. Enke and W. Tolksdorf, “Continuously recording refractive index spectrograph for transparent and opaque insulators and semiconductors,” Rev. Sci. Instrum. 49(12), 1625–1628 (1978).
[Crossref] [PubMed]

Turpin, J. P.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1(11), e38 (2012).
[Crossref]

Vainos, N. A.

Wang, Y.

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Warburton, T. J.

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

Watanabe, Y.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Werner, D. H.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1(11), e38 (2012).
[Crossref]

Wu, Q.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1(11), e38 (2012).
[Crossref]

Wu, S.

Xu, X.

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Yanagisawa, T.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

Zakery, A.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69(1), 10–12 (1996).
[Crossref]

Appl. Surf. Sci. (2)

T. C. May-Smith, C. Grivas, D. P. Shepherd, R. W. Eason, and M. J. F. Healy, “Thick film growth of high optical quality low loss (0.1dBcm−1) Nd:Gd3Ga5O12 on Y3Al5O12 by pulsed laser deposition,” Appl. Surf. Sci. 223(4), 361–371 (2004).
[Crossref]

R. W. Eason, T. C. May-Smith, C. Grivas, M. S. B. Darby, D. P. Shepherd, and R. Gazia, “Current state-of-the-art of pulsed laser deposition of optical waveguide structures: Existing capabilities and future trends,” Appl. Surf. Sci. 255(10), 5199–5205 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Nigara, “Measurement of the Optical Constants of Yttrium Oxide,” Jpn. J. Appl. Phys. 7(4), 404–408 (1968).
[Crossref]

Light Sci. Appl. (1)

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1(11), e38 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Rev. Sci. Instrum. (1)

K. Enke and W. Tolksdorf, “Continuously recording refractive index spectrograph for transparent and opaque insulators and semiconductors,” Rev. Sci. Instrum. 49(12), 1625–1628 (1978).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016).
[Crossref] [PubMed]

Other (10)

J. Lancok, M. Jelinek, and F. Flory, “Optical properties of PLD-created Nd:YAG and Nd:YAP planar waveguide thin films,” in P. A. Atanasov and D. V. Stoyanov, eds. (SPIE, 1999), Vol. 3571, p. 364.

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Engineering of thin crystal layers grown by pulsed laser deposition,” in Proc. SPIE 9893, Laser Sources and Applications III, J. I. Mackenzie, H. JelÍnková, T. Taira, and M. Abdou Ahmed, eds. (SPIE, 2016), Vol. 9893, p. 98930E.

J. I. Mackenzie, J. A. Grant-Jacob, S. Beecher, H. Riris, A. W. Yu, D. P. Shepherd, and R. W. Eason, “Er:YGG planar waveguides grown by pulsed laser deposition for LIDAR applications,” in Proc. SPIE, Solid State Lasers XXVI: Technology and Devices, W. A. Clarkson and R.K. Shori, eds. (SPIE, 2017), 10082, p. 100820A.

T. Sakimura, Y. Watanabe, T. Ando, S. Kameyama, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR,” in Proceedings of 17th Coherent Laser Radar Conference (2013).

A. Sposito, “Pulsed laser deposition of thin film magneto-optic materials and lasing waveguides,” Ph.D. thesis, University of Southampton (2014).

23848, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .

14343, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .

82420, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .

39186, “Inorganic Crystal Structure Database (ICSD),” http://icsd.cds.rsc.org .

P. Hertel, Continuum Physics, Graduate Texts in Physics (Springer Berlin Heidelberg, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of PLD setup.
Fig. 2
Fig. 2 XRD spectra from Er(1%):YGG films grown at different substrate-heating CO2 laser powers. The data have been normalized to 1 for ease of viewing. The vertical dashed black line corresponds to the 2θ database value for YGG (400), the vertical dotted black line corresponds to the 2θ database value for Y2O3 (222), the dashed red line corresponds to the 2θ database value for Er2O3 (222), and the vertical green dashed line corresponds to the 2θ database value for YAG (400).
Fig. 3
Fig. 3 2θ FWHM (black dots) and 2θ peak position (red dots) of the (400) YGG-film peak from Er(1%):YGG films grown as a function of substrate-heating CO2 laser power. Approximate substrate temperatures are quoted on the upper axis. The instrument errors fall within the size of the data points shown. Horizontal dashed red line indicates the 2θ peak position of YGG (400) at 29.06°.
Fig. 4
Fig. 4 Ratio of Y atom concentration to Ga atom concentration as a function of substrate-heating CO2 laser power. Approximate substrate temperatures are quoted on the upper axis.
Fig. 5
Fig. 5 Refractive index as a function of substrate-heating CO2 laser power. Approximate substrate temperatures are quoted on the upper axis.
Fig. 6
Fig. 6 SEM secondary-electron image of layered film with annotation of corresponding substrate-heating CO2 laser power profile of substrate during deposition of Er(1%):YGG layers. Approximate substrate temperatures are also included in the annotation.
Fig. 7
Fig. 7 Effective refractive index measurements for the first 17 modes (red crosses), with modelled refractive index (blue circles), for the five layered film. The error bars for the experimental data fall within the size of the data points shown. Inset: calculated fundamental mode profile, with respect to the refractive index profile of the waveguide structure.

Metrics