Abstract

The effect of rapid thermal annealing (RTA) on the optical properties of InGaAsP with band-gap energy of around 1.05 eV for quadruple-junction solar cells grown by molecular beam epitaxy (MBE) has been investigated. The photoluminescence (PL) spectrum of InGaAsP film annealed at 800 °C has strong integrated intensity and low activation energy of band-tail states. The time-resolved PL measurement shows that the decay time of the InGaAsP annealed at 800 °C and as-grown one are 11.6 ns and 3.0 ns at 10 K, respectively. An S-shape PL decay time as a function of temperature for the InGaAsP annealed at 800 °C is observed and is explained by the carrier relaxation dynamics. The RTA process induces reorganization of In and Ga inside the alloy due to the existence of miscibility gap in InGaAsP grown by MBE owing to the Be diffusion at high temperature and results in an increased composition uniformity and an improved PL intensity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of rapid thermal annealing on the optical properties of GaAsSb alloys

Xian Gao, Zhipeng Wei, Xuan Fang, Jilong Tang, Dan Fang, Dengkui Wang, Xueying Chu, Jinhua Li, Xiaohui Ma, Xiaohua Wang, and Rui Chen
Opt. Mater. Express 7(6) 1971-1979 (2017)

Effect of growth temperature on the structural and optical properties of few-layer hexagonal boron nitride by molecular beam epitaxy

David Arto Laleyan, Kelsey Mengle, Songrui Zhao, Yongjie Wang, Emmanouil Kioupakis, and Zetian Mi
Opt. Express 26(18) 23031-23039 (2018)

Picosecond carrier lifetime and large optical nonlinearities in InGaAsP grown by He-plasma-assisted molecular beam epitaxy

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson
Opt. Lett. 22(2) 108-110 (1997)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).
  2. M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75(1), 261–269 (2003).
  3. F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).
  4. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
  5. A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
  6. W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
  7. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
  8. B. C. Chung, F. G. Virshup, M. L. Ristow, M. W. Wanlass, and M. Klausmeier, “25.2%-efficiency (1-Sun, air mass 0) AlGaAs/GaAs/InGaAsP three-junction, two-terminal solar cell,” Proc. 22th IEEE Photovoltaic Specialists Conf. (IEEE,New York, 1991) pp. 54–57.
  9. P. R. Sharp, M. L. Timmons, R. Venkatasubramanian, R. Pickett, J. S. Hills, J. Hancock, and J. Hutchby, “Development of 20% efficient GaInAsP solar cells,” Proc. 23th IEEE Photovoltaic Specialists Conf. (IEEE, New York, 1993) pp. 633–638.
  10. H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).
  11. N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).
  12. J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).
  13. J. N. Baillargeon, A. Y. Cho, and K. Y. Cheng, “Incorporation of arsenic and phosphorus in GaxIn1−xAsyP1−y alloys grown by molecular beam epitaxy using solid phosphorus and arsenic valved cracking cells,” J. Appl. Phys. 79(10), 7652–7657 (1996).
  14. L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).
  15. S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).
  16. L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).
  17. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
  18. C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).
  19. S. L. Hong, “Time-resolved and temperature-dependent photoluminescence studies on CdTe/ZnTe quantum dots with different ZnTe capping layer thicknesses,” Thin Solid Films 547, 272–275 (2013).
  20. H. B. Bebb and E. W. Williams, “Photoluminescence I: Theory,” in Semiconductors and Semimetals, R. K. Willardson, A. C. Beer, ed. (Academic, 1972).
  21. M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).
  22. A. G. Norman and G. R. Booker, “Transmission electron-microscope and transmission electron-diffraction observations of alloy clustering in liquid-phase epitaxial (001) GaInAsP layers,” J. Appl. Phys. 57(10), 4715–4720 (1985).
  23. K. Non and M. Takemi, “Investigation of anomalous optical characteristics of InGaAsP layers on GaAs substrates grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 47(3R), 1484–1490 (2008).
  24. S. Koumetz and C. Dubois, “Be diffusion behavior in InGaAs, InGaAsP and InGaAs/InGaAsP GSMBE structures,” J. Cryst. Growth 252(1), 14–18 (2003).
  25. L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

2017 (2)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

2014 (2)

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

2013 (1)

S. L. Hong, “Time-resolved and temperature-dependent photoluminescence studies on CdTe/ZnTe quantum dots with different ZnTe capping layer thicknesses,” Thin Solid Films 547, 272–275 (2013).

2008 (1)

K. Non and M. Takemi, “Investigation of anomalous optical characteristics of InGaAsP layers on GaAs substrates grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 47(3R), 1484–1490 (2008).

2006 (1)

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

2003 (3)

M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75(1), 261–269 (2003).

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

S. Koumetz and C. Dubois, “Be diffusion behavior in InGaAs, InGaAsP and InGaAs/InGaAsP GSMBE structures,” J. Cryst. Growth 252(1), 14–18 (2003).

2001 (2)

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

1997 (2)

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

1996 (2)

J. N. Baillargeon, A. Y. Cho, and K. Y. Cheng, “Incorporation of arsenic and phosphorus in GaxIn1−xAsyP1−y alloys grown by molecular beam epitaxy using solid phosphorus and arsenic valved cracking cells,” J. Appl. Phys. 79(10), 7652–7657 (1996).

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).

1995 (1)

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

1994 (1)

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

1985 (1)

A. G. Norman and G. R. Booker, “Transmission electron-microscope and transmission electron-diffraction observations of alloy clustering in liquid-phase epitaxial (001) GaInAsP layers,” J. Appl. Phys. 57(10), 4715–4720 (1985).

1982 (1)

M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

1961 (1)

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).

Araujo, G. L.

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).

Arimochi, M.

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Asaka, N.

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Baillargeon, J. N.

J. N. Baillargeon, A. Y. Cho, and K. Y. Cheng, “Incorporation of arsenic and phosphorus in GaxIn1−xAsyP1−y alloys grown by molecular beam epitaxy using solid phosphorus and arsenic valved cracking cells,” J. Appl. Phys. 79(10), 7652–7657 (1996).

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

Beckert, R.

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

Benchimol, J. L.

M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).

Benjamin, S. D.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

Bertness, K. A.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Bett, A. W.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

Beutel, P.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Bian, L. F.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Blanc, N.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Bloeck, U.

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Booker, G. R.

A. G. Norman and G. R. Booker, “Transmission electron-microscope and transmission electron-diffraction observations of alloy clustering in liquid-phase epitaxial (001) GaInAsP layers,” J. Appl. Phys. 57(10), 4715–4720 (1985).

Chen, Y. F.

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

Cheng, K. Y.

J. N. Baillargeon, A. Y. Cho, and K. Y. Cheng, “Incorporation of arsenic and phosphorus in GaxIn1−xAsyP1−y alloys grown by molecular beam epitaxy using solid phosphorus and arsenic valved cracking cells,” J. Appl. Phys. 79(10), 7652–7657 (1996).

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

Cho, A. Y.

J. N. Baillargeon, A. Y. Cho, and K. Y. Cheng, “Incorporation of arsenic and phosphorus in GaxIn1−xAsyP1−y alloys grown by molecular beam epitaxy using solid phosphorus and arsenic valved cracking cells,” J. Appl. Phys. 79(10), 7652–7657 (1996).

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

Daguet, C.

M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).

Dai, J. M.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Dai, P.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Dharmarasu, N.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Dimroth, F.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

Ding, C.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

Dobrich, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Drazek, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Dubois, C.

S. Koumetz and C. Dubois, “Be diffusion behavior in InGaAs, InGaAsP and InGaAs/InGaAsP GSMBE structures,” J. Cryst. Growth 252(1), 14–18 (2003).

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Fiedeler, U.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Fischer, R. J.

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

Friedman, D. J.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Ge, W. K.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Ghyselen, B.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Grave, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Guiot, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Hannappel, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Hansen, B. R.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Harasawa, R.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Honda, K.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

Hong, S. L.

S. L. Hong, “Time-resolved and temperature-dependent photoluminescence studies on CdTe/ZnTe quantum dots with different ZnTe capping layer thicknesses,” Thin Solid Films 547, 272–275 (2013).

Huang, J. S.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Huang, Y. S.

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

Imaizumi, M.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Itoh, H.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Ji, L.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Jiang, D. S.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Karcher, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Khan, A.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Kibbler, A. E.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

King, D. L.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Kollonitsch, Z.

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Koumetz, S.

S. Koumetz and C. Dubois, “Be diffusion behavior in InGaAs, InGaAsP and InGaAs/InGaAsP GSMBE structures,” J. Cryst. Growth 252(1), 14–18 (2003).

Kramer, C.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Krause, R.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Kurtz, S. R.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Launois, H.

M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).

Li, C. F.

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

Lin, D. Y.

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

Lu, S. L.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Marti, A.

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).

Matsuda, S.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Meusel, M.

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

Moller, K.

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Non, K.

K. Non and M. Takemi, “Investigation of anomalous optical characteristics of InGaAsP layers on GaAs substrates grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 47(3R), 1484–1490 (2008).

Norman, A. G.

A. G. Norman and G. R. Booker, “Transmission electron-microscope and transmission electron-diffraction observations of alloy clustering in liquid-phase epitaxial (001) GaInAsP layers,” J. Appl. Phys. 57(10), 4715–4720 (1985).

Ohshima, T.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Oliva, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Olson, J. M.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Pearah, P. J.

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

Piccin, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Qian, L.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

Queisser, H.

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).

Quillec, M.

M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).

Robinson, B. J.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

Salvetat, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Schachtner, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Schimper, H. J.

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Schubert, U.

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

Schwarzburg, K.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Seidel, U.

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Shen, D. Z.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Shockley, W.

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).

Siefer, G.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Signamarcheix, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Smith, P. W. E.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

Snyder, J. K.

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

Tackeuchi, A.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Takagishi, S.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Takamoto, T.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Takemi, M.

K. Non and M. Takemi, “Investigation of anomalous optical characteristics of InGaAsP layers on GaAs substrates grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 47(3R), 1484–1490 (2008).

Tan, M.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

Tanabe, T.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Tauzin, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Thiel, F. A.

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

Thompson, D. A.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

Tibbits, T. N. D.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Tiong, K. K.

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

Uchida, S.

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Uemura, M.

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Wang, J. N.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Wang, Y. Q.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Watanabe, T.

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Wekkeli, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

Willing, F.

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Wu, Y. Y.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Yamada, T.

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Yamaguchi, M.

M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75(1), 261–269 (2003).

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

Yang, C. L.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Yang, H.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Yasue, Y.

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

Zhang, J. Y.

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

Appl. Phys. Lett. (4)

N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, and S. Matsuda, “High-radiation-resistant InGaP, InGaAsP, and InGaAs solar cells for multijuction solar cells,” Appl. Phys. Lett. 79(15), 2399–2401 (2001).

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett. 65(2), 207–209 (1994).

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson, “Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 71(11), 1513–1515 (1997).

M. Quillec, C. Daguet, J. L. Benchimol, and H. Launois, “InxGa1-xAsyP1-y alloy stabilization by the InP substrate inside an unstable region in liquid phase epitaxy,” Appl. Phys. Lett. 40(4), 325–326 (1982).

J. Appl. Phys. (4)

A. G. Norman and G. R. Booker, “Transmission electron-microscope and transmission electron-diffraction observations of alloy clustering in liquid-phase epitaxial (001) GaInAsP layers,” J. Appl. Phys. 57(10), 4715–4720 (1985).

C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, “Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure,” J. Appl. Phys. 81(1), 400–405 (1997).

J. N. Baillargeon, A. Y. Cho, and K. Y. Cheng, “Incorporation of arsenic and phosphorus in GaxIn1−xAsyP1−y alloys grown by molecular beam epitaxy using solid phosphorus and arsenic valved cracking cells,” J. Appl. Phys. 79(10), 7652–7657 (1996).

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).

J. Cryst. Growth (4)

L. Ji, M. Tan, C. Ding, K. Honda, R. Harasawa, Y. Yasue, Y. Y. Wu, P. Dai, A. Tackeuchi, L. F. Bian, S. L. Lu, and H. Yang, “The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device,” J. Cryst. Growth 458, 110–114 (2017).

S. L. Lu, J. N. Wang, J. S. Huang, L. F. Bian, D. S. Jiang, C. L. Yang, J. M. Dai, W. K. Ge, Y. Q. Wang, J. Y. Zhang, and D. Z. Shen, “The effects of rapid thermal annealing on the optical properties of Zn1−xMnxSe epilayer grown by MOCVD on GaAs substrate,” J. Cryst. Growth 249(3), 538–543 (2003).

S. Koumetz and C. Dubois, “Be diffusion behavior in InGaAs, InGaAsP and InGaAs/InGaAsP GSMBE structures,” J. Cryst. Growth 252(1), 14–18 (2003).

H. J. Schimper, Z. Kollonitsch, K. Moller, U. Seidel, U. Bloeck, K. Schwarzburg, F. Willing, and T. Hannappel, “Material studies regarding InP-based high-efficiency solar cells,” J. Cryst. Growth 287(2), 642–646 (2006).

Jpn. J. Appl. Phys. (1)

K. Non and M. Takemi, “Investigation of anomalous optical characteristics of InGaAsP layers on GaAs substrates grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 47(3R), 1484–1490 (2008).

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).

Prog. Photovolt. Res. Appl. (4)

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).

D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, “30.2% Eficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl. 3(1), 47–50 (1995).

F. Dimroth, R. Beckert, M. Meusel, U. Schubert, and A. W. Bett, “Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns,” Prog. Photovolt. Res. Appl. 9(3), 165–178 (2001).

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).

Sol. Energy Mater. Sol. Cells (3)

A. Marti and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).

M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75(1), 261–269 (2003).

L. Ji, S. L. Lu, Y. Y. Wu, P. Dai, L. F. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, “Carrier recombination dynamics of MBE grown InGaAsP layers with 1eV bandgap for quadruple-junction solar cells,” Sol. Energy Mater. Sol. Cells 127, 1–5 (2014).

Thin Solid Films (1)

S. L. Hong, “Time-resolved and temperature-dependent photoluminescence studies on CdTe/ZnTe quantum dots with different ZnTe capping layer thicknesses,” Thin Solid Films 547, 272–275 (2013).

Other (3)

H. B. Bebb and E. W. Williams, “Photoluminescence I: Theory,” in Semiconductors and Semimetals, R. K. Willardson, A. C. Beer, ed. (Academic, 1972).

B. C. Chung, F. G. Virshup, M. L. Ristow, M. W. Wanlass, and M. Klausmeier, “25.2%-efficiency (1-Sun, air mass 0) AlGaAs/GaAs/InGaAsP three-junction, two-terminal solar cell,” Proc. 22th IEEE Photovoltaic Specialists Conf. (IEEE,New York, 1991) pp. 54–57.

P. R. Sharp, M. L. Timmons, R. Venkatasubramanian, R. Pickett, J. S. Hills, J. Hancock, and J. Hutchby, “Development of 20% efficient GaInAsP solar cells,” Proc. 23th IEEE Photovoltaic Specialists Conf. (IEEE, New York, 1993) pp. 633–638.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 PL spectra at 10 K of three samples, the inset shows the PL peak energy vibration.
Fig. 2
Fig. 2 (a) Temperature-dependent PL spectra of sample C and (b) PL peak energies as function of temperature of the three samples.
Fig. 3
Fig. 3 Integrated PL intensities as a function of reciprocal temperature for InGaAsP (a) Sample A, (b) Sample B and (c) Sample C.
Fig. 4
Fig. 4 Time-resolved PL spectra at 10 K with the excitation power of 5 mW.
Fig. 5
Fig. 5 (a) PL decay curves of sample C at different temperature from 50 K to 300 K;(b) PL decay time as a function of temperature about sample C.
Fig. 6
Fig. 6 The PL linewidth (FWHM) as a function of PL photon energy.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 1+C*Exp( Δ E A k B T ) .
C*Exp( Δ E A k B T )= I 0 I I .
I 0 I I = I 0 I >>1.
ln(I)= Δ E A k B * 1 T + C * .
τ= 1 N t ( 1 r n + 1 r p )*[ 1 r n ( p 0 n 1 )+ r p ( n 0 p 1 ) ( r n + r p )( n 0 + p 0 +Δp ) ].
p 1 = p 0 *exp( E t E F k 0 T ).
τ= 1 N t * r n *[ 1+exp( E t E F k 0 T ) ].
E F = E v k 0 T*ln( N A N C ).
τ 1 N t exp( a b k 0 T ).

Metrics