Abstract

The laser damage resistance of an optical element in high power laser systems depends significantly on the surface quality of the optical substrate. In this experiment, commercially polished fused silica substrates were etched in argon plasma generated by a RF source and their surface roughness, flatness and optical properties were investigated. This method can be applied in a vacuum chamber prior to deposition of the multilayer coatings without breaking the vacuum. It was shown that by etching the resistance to 355 nm, laser radiation could be improved more than 8 times. However, it strongly related with primary substrate quality. The etching depth from 100 nm suggests the optimum performance of surface quality in terms of surface low roughness, high flatness, and high laser damage threshold. These results are of significant importance for the manufacture of high quality laser optics on fused silica substrates. As an example of an application of our technology, anti-reflective and polarizing optical interference coatings were deposited on etched substrates and the increase of their resistance to laser radiation was measured.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics

Laixi Sun, Jin Huang, Ting Shao, Xin Ye, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 26(14) 18006-18018 (2018)

Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
    [Crossref]
  2. Y. Lee, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).
  3. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
    [Crossref]
  4. S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1-3), 34–41 (2008).
    [Crossref]
  5. L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
    [Crossref] [PubMed]
  6. K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
    [Crossref]
  7. S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
    [Crossref]
  8. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]
  9. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser-induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [Crossref]
  10. Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
    [Crossref]
  11. Y. Chai, M. Zhu, Z. Bai, K. Yi, H. Wang, Y. Cui, and J. Shao, “Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings,” Opt. Lett. 40(7), 1330–1333 (2015).
    [Crossref] [PubMed]
  12. S. Jha and V. K. Jain, “Nanofinishing Techniques,” in Micromanufacturing and Nanotechnology (Springer Berlin Heidelberg, 2006), pp. 171–195.
  13. J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
    [Crossref]
  14. Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
    [Crossref] [PubMed]
  15. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  16. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [Crossref]
  17. V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31(5), 050825 (2013).
    [Crossref]
  18. A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
    [Crossref]
  19. J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
    [Crossref]
  20. C. Gerhard, D. Tasche, N. Munser, and H. Dyck, “Increase in nanosecond laser-induced damage threshold of sapphire windows by means of direct dielectric barrier discharge plasma treatment,” Opt. Lett. 42(1), 49–52 (2017).
    [Crossref] [PubMed]
  21. F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
    [Crossref] [PubMed]
  22. M. Affatigato, D. H. Osborne, and R. F. Haglund., “Effect of surface roughness on the acid etching of amorphous silica,” J. Am. Ceram. Soc. 79(3), 688–694 (1996).
    [Crossref]
  23. M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
    [Crossref]
  24. N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
    [Crossref]
  25. T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
    [Crossref]
  26. S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).
  27. D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
    [Crossref]
  28. G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
    [Crossref]
  29. ISO-11254–1, “Lasers and laser-related equipment,” in Determination of laser-induced damage threshold of optical surfaces, Part 1: 1-on-1 test, (2000).
  30. J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, T. K. Lippert, ed. (Berlin, Heidelberg, 2004), pp. 247–290.
  31. ISO-11146, “Lasers and laser-related equipment,” in Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: Stigmatic and simple astigmatic beams (2005).
  32. G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
    [Crossref]
  33. G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).

2017 (4)

Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
[Crossref]

A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
[Crossref]

C. Gerhard, D. Tasche, N. Munser, and H. Dyck, “Increase in nanosecond laser-induced damage threshold of sapphire windows by means of direct dielectric barrier discharge plasma treatment,” Opt. Lett. 42(1), 49–52 (2017).
[Crossref] [PubMed]

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

2016 (2)

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[Crossref] [PubMed]

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

2015 (1)

2014 (1)

M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
[Crossref]

2013 (4)

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31(5), 050825 (2013).
[Crossref]

L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
[Crossref] [PubMed]

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

2012 (2)

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
[Crossref]

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (1)

2009 (1)

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

2008 (2)

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1-3), 34–41 (2008).
[Crossref]

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

2006 (1)

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

2005 (2)

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

2004 (1)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser-induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

2002 (1)

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

1998 (1)

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

1996 (1)

M. Affatigato, D. H. Osborne, and R. F. Haglund., “Effect of surface roughness on the acid etching of amorphous silica,” J. Am. Ceram. Soc. 79(3), 688–694 (1996).
[Crossref]

1973 (1)

Abromavicius, G.

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

Affatigato, M.

M. Affatigato, D. H. Osborne, and R. F. Haglund., “Effect of surface roughness on the acid etching of amorphous silica,” J. Am. Ceram. Soc. 79(3), 688–694 (1996).
[Crossref]

Audronis, M.

M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
[Crossref]

Bai, Z.

Bataviciute, G.

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
[Crossref]

Belosludtsev, A.

A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
[Crossref]

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Bloembergen, N.

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Buzelis, R.

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

Camp, D. W.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Carr, J.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Cerstvý, R.

A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
[Crossref]

Chai, Y.

Chen, X.

Cui, Y.

Dai, Y.

Davis, P. J.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Deng, Y.

Donnelly, V. M.

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31(5), 050825 (2013).
[Crossref]

Drazdys, R.

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

Dyck, H.

Emmert, L.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser-induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

Fengrui, W.

Gerhard, C.

Golini, D.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Grigas, P.

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
[Crossref]

Grineviciute, L.

Guo, Y.

Haglund, R. F.

M. Affatigato, D. H. Osborne, and R. F. Haglund., “Effect of surface roughness on the acid etching of amorphous silica,” J. Am. Ceram. Soc. 79(3), 688–694 (1996).
[Crossref]

Hongjie, L.

Houška, J.

A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
[Crossref]

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Huang, H.

Hutcheon, I. D.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Jiang, J.

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Jin, H.

Juškevicius, K.

M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Kicas, S.

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Kornblit, A.

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31(5), 050825 (2013).
[Crossref]

Kozlowski, M. R.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Kraujaliene, I.

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Krous, E.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Laixi, S.

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Li, H.

Li, S.

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1-3), 34–41 (2008).
[Crossref]

Li, Y.

Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
[Crossref]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

Liukaityte, S.

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Matthews, A.

M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
[Crossref]

Meletis, E. I.

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Melnikas, S.

Melninkaitis, A.

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
[Crossref]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Menoni, C. S.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Mero, M.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Munser, N.

Nguyen, D. N.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Nichols, M.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Osborne, D. H.

M. Affatigato, D. H. Osborne, and R. F. Haglund., “Effect of surface roughness on the acid etching of amorphous silica,” J. Am. Ceram. Soc. 79(3), 688–694 (1996).
[Crossref]

Parham, T. G.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Patel, D.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Penetrante, B.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Peng, X.

Perednis, D.

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

Peterson, J.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Pi, N.-W.

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Pupka, E.

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser-induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

Rudolph, W. G.

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

Šciuka, M.

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Selskis, A.

Shao, J.

Sheehan, L. M.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Shi, F.

Skrebutenas, A.

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

Slomba, A. F.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Smalakys, L.

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
[Crossref]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

Sui, T.

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

Tasche, D.

Tolenis, T.

T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Torres, R. A.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Tumosa, D.

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

Vlcek, J.

A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
[Crossref]

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Wang, H.

Wang, J.

Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
[Crossref]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

Wang, Z.

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1-3), 34–41 (2008).
[Crossref]

Wanguo, Z.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

Wu, Y.

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1-3), 34–41 (2008).
[Crossref]

Xiaodong, J.

Xiaoyan, Z.

Xie, R.

Xin, Y.

Xinda, Z.

Xu, M.

Xu, Q.

Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
[Crossref]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

Yan, M.

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Yang, W.

Yi, K.

Yuan, Z.

Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
[Crossref]

Zhan, S.

Zhang, M.

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Zhong, Y.

Zhu, M.

Appl. Opt. (1)

J. Am. Ceram. Soc. (2)

M. Affatigato, D. H. Osborne, and R. F. Haglund., “Effect of surface roughness on the acid etching of amorphous silica,” J. Am. Ceram. Soc. 79(3), 688–694 (1996).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Mater. Process. Technol. (1)

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1-3), 34–41 (2008).
[Crossref]

J. Vac. Sci. Technol. A (2)

V. M. Donnelly and A. Kornblit, “Plasma etching: Yesterday, today, and tomorrow,” J. Vac. Sci. Technol. A 31(5), 050825 (2013).
[Crossref]

A. Belosludtsev, J. Vlček, J. Houška, and R. Čerstvý, “Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates,” J. Vac. Sci. Technol. A 35(3), 031503 (2017).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

Y. Li, Z. Yuan, J. Wang, and Q. Xu, “Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes,” Opt. Laser Technol. 91, 149–158 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (12)

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599103 (2005).
[Crossref]

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars,” Proc. SPIE 8530, 85301S (2012).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

K. Juškevičius, R. Buzelis, S. Kičas, T. Tolenis, R. Drazdys, G. Batavičiūtė, E. Pupka, L. Smalakys, and A. Melninkaitis, “Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates,” Proc. SPIE 8885, 888529 (2013).
[Crossref]

S. Liukaitytė, G. Batavičiūtė, E. Pupka, M. Ščiuka, I. Kraujalienė, D. Tumosa, A. Skrebutėnas, K. Juškevičius, T. Tolenis, S. Kičas, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance,” Proc. SPIE 8530, 853027 (2012).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser-induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

S. Kičas, G. Batavičiūtė, K. Juškevičius, T. Tolenis, R. Drazdys, R. Buzelis, and A. Melninkaitis, “Characterization and application of HfO2 - SiO2 mixtures produced by ion-beam sputtering technology,” Proc. SPIE 8885, 888527 (2013).

D. N. Nguyen, L. Emmert, M. Mero, W. G. Rudolph, D. Patel, E. Krous, and C. S. Menoni, “The effect of annealing on the subpicosecond breakdown behavior of hafnia films,” Proc. SPIE 7132, 71320N (2008).
[Crossref]

G. Abromavičius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutėnas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961(2006).
[Crossref]

Thin Solid Films (1)

N.-W. Pi, M. Zhang, J. Jiang, A. Belosludtsev, J. Vlček, J. Houška, and E. I. Meletis, “Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control,” Thin Solid Films 619, 239–249 (2016).
[Crossref]

Vacuum (1)

M. Audronis, A. Matthews, K. Juškevičius, and R. Drazdys, “Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering,” Vacuum 107, 159–163 (2014).
[Crossref]

Other (6)

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).

S. Jha and V. K. Jain, “Nanofinishing Techniques,” in Micromanufacturing and Nanotechnology (Springer Berlin Heidelberg, 2006), pp. 171–195.

ISO-11254–1, “Lasers and laser-related equipment,” in Determination of laser-induced damage threshold of optical surfaces, Part 1: 1-on-1 test, (2000).

J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, T. K. Lippert, ed. (Berlin, Heidelberg, 2004), pp. 247–290.

ISO-11146, “Lasers and laser-related equipment,” in Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: Stigmatic and simple astigmatic beams (2005).

Y. Lee, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Side view (a) and top view (b) drawings showing the plasma etching procedure and RADIANCE sputter platform, respectively.
Fig. 2
Fig. 2 Reflectance and transmittance spectra of anti-reflective (AR<0.2%@355 AOI = 0 deg) (a) and polarizing (Pol@355 AOI = 56 deg, Tp>95%, Rs>99.5%) (b) OIC‘s deposited on etched and non-etched FS substrates.
Fig. 3
Fig. 3 LIDT measuring schematics. M – mirrors, PC – computer for system control, SF – space filter, PD1 – incident beam energy registration photodiode, λ/2 – phase plate, P – polarizer, BS – beam splitter, SH – beam shutter, L1 – focusing lens, XYZ – motorized sample holder, SDM – scattering detection module: Sh – direct beam path shield, L2 – scattered light collecting lens, A – aperture, PD2 – scattered light registration photodiode.
Fig. 4
Fig. 4 Comparison of transmittance spectra of individual FS substrates before and after ion etching.
Fig. 5
Fig. 5 Comparison of FS surface roughness (a) and flatness (b) values before and after argon plasma etching. Interferometer wavelength λ = 633 nm.
Fig. 6
Fig. 6 LIDT comparison of non-etched and etched FS substrates.
Fig. 7
Fig. 7 LID probability curves of anti-reflective (AR@355) and polarizing (Pol.@355) OIC’s, deposited on non-etched and etched substrates.
Fig. 8
Fig. 8 Characteristic damage morphologies of non-etched (a) and etched (b) FS substrates, coated with AR<0.2%@355 AOI = 0 deg coatings.

Metrics