Abstract

In the quest of finding the ideal polymer optical fiber (POF) for Bragg grating sensing, we have fabricated and characterized an endlessly single mode microstructured POF (mPOF). This fiber is made from cyclo-olefin homopolymer Zeonex grade 480R which has a very high glass transition temperature of 138 °C and is humidity insensitive. It represents a significant improvement with respect to the also humidity insensitive Topas core fibers, in that Zeonex fibers are easier to manufacture, has better transmittance, higher sensitivity to temperature and better mechanical stability at high temperature. Furthermore, Zeonex has very good compatibility with PMMA in terms of dilatation coefficients for co-drawing applications. The Zeonex mPOF has a core and cladding diameter of 8.8 µm and 150 µm, respectively, with a hole to pitch ratio of 0.4 and a minimum propagation loss of 2.34 ± 0.39 dB/m at 690.78 nm. We have also inscribed and characterized fiber Bragg gratings (FBGs) in Zeonex mPOFs in the low loss 850 nm spectral band.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

Getinet Woyessa, Andrea Fasano, Alessio Stefani, Christos Markos, Kristian Nielsen, Henrik K. Rasmussen, and Ole Bang
Opt. Express 24(2) 1253-1260 (2016)

High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Wu Yuan, and Ole Bang
Opt. Express 21(4) 4758-4765 (2013)

Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb and K. Kalli, “Polymer Fiber Bragg Gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science, 2010).
  2. D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  3. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  4. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  5. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  6. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  7. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  8. H. U. Hassan, K. Nielsen, S. Aasmul, and O. Bang, “Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors,” Biomed. Opt. Express 6(12), 5008–5020 (2015).
    [Crossref] [PubMed]
  9. C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
    [Crossref]
  10. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
    [Crossref] [PubMed]
  11. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
    [Crossref] [PubMed]
  12. H. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).
  13. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
    [Crossref]
  14. C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
    [Crossref]
  15. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  16. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [Crossref]
  18. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  19. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  20. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
    [Crossref]
  21. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
    [Crossref]
  22. S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
    [Crossref]
  23. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  24. S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Opt. Express 20(1), 141–148 (2012).
    [Crossref] [PubMed]
  25. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
    [Crossref] [PubMed]
  26. N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber draw double split ring resonators in the terahertz range,” Opt. Mater. Express 2(9), 1254–1259 (2012).
    [Crossref]
  27. http://www.zeonex.com/optics.aspx .
  28. Topas Advanced Polymers Inc, “Data Sheet - Topas 5013S-04,” (Topas Advanced Polymers Inc., 2015), http://www.topas.com/sites/default/files/TDS_5013S_04_e_1.pdf .
  29. É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015).
    [Crossref]
  30. T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990).
    [Crossref]
  31. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [Crossref]
  32. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
    [Crossref] [PubMed]
  33. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  34. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  35. A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
    [Crossref]
  36. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  37. I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
    [Crossref] [PubMed]
  38. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  39. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
    [Crossref] [PubMed]
  40. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
    [Crossref]
  41. I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
    [Crossref]

2016 (3)

2015 (6)

É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015).
[Crossref]

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

H. U. Hassan, K. Nielsen, S. Aasmul, and O. Bang, “Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors,” Biomed. Opt. Express 6(12), 5008–5020 (2015).
[Crossref] [PubMed]

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (6)

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber draw double split ring resonators in the terahertz range,” Opt. Mater. Express 2(9), 1254–1259 (2012).
[Crossref]

S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
[Crossref]

S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Opt. Express 20(1), 141–148 (2012).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

2011 (6)

2010 (3)

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

2009 (2)

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
[Crossref]

2007 (3)

2005 (2)

2002 (1)

2001 (1)

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

1997 (1)

1990 (1)

T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990).
[Crossref]

Aasmul, S.

Abang, A.

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Anand, L.

S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
[Crossref]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Anthony, J.

Argyros, A.

Atakaramians, S.

Bang, O.

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

H. U. Hassan, K. Nielsen, S. Aasmul, and O. Bang, “Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors,” Biomed. Opt. Express 6(12), 5008–5020 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Berberan-Santos, M. N.

É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015).
[Crossref]

Bilro, L.

Birks, T. A.

Bjarklev, A.

Bremner, T.

T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990).
[Crossref]

Brites, M. J.

É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015).
[Crossref]

Broadway, C.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

Bundalo, I.-L.

Carpintero, G.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

Carroll, K. E.

Celanese, H.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Chen, X.

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Chocat, N.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Constable, E.

Cook, D. G.

T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990).
[Crossref]

Dobb, H.

Egusa, S.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Emiliyanov, G.

Fasano, A.

Fink, Y.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Fleming, S. C.

Gallego, D.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Hassan, H. U.

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Hoiby, P.

Hoiby, P. E.

Jensen, J.

Jensen, J. B.

Joannopoulos, J. D.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

Kalli, K.

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Khanarian, G.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Kjaer, E. M.

Knight, J. C.

Krebber, K.

Kuhlmey, B. T.

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Lamela, H.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

Large, M. C. J.

Leonhardt, R.

Leon-Saval, S. G.

Lewis, R. A.

Lindvold, L.

Lwin, R.

Markos, C.

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

Martijn de Sterke, C.

McPhedran, R. C.

Nielsen, K.

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

H. U. Hassan, K. Nielsen, S. Aasmul, and O. Bang, “Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors,” Biomed. Opt. Express 6(12), 5008–5020 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Nogueira, R.

Oliveira, R.

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Pedersen, L.

Pedersen, L. H.

Peng, G. D.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Pogson, E. M.

Pospori, A.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

Rakich, P. T.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Rasmussen, H. K.

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Roy, S.

S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
[Crossref]

Rudin, A.

T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990).
[Crossref]

Ruff, Z. M.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Russell, P. St. J.

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Shemuly, D.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Singh, N.

Sorin, F.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Stajanca, P.

Stefani, A.

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Stolyarov, A. M.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Sugden, K.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Torres, É.

É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015).
[Crossref]

Town, G. E.

Tuniz, A.

van Eijkelenborg, M. A.

Vlachos, K.

Wang, Z.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Wang, Z. Y.

S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
[Crossref]

Webb, D. J.

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[Crossref] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Woyessa, G.

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Yue, C. Y.

S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
[Crossref]

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[Crossref] [PubMed]

Zhang, W.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Biomed. Opt. Express (1)

Dyes Pigments (1)

É. Torres, M. N. Berberan-Santos, and M. J. Brites, “Synthesis, photophysical and electrochemical properties of perylene dyes,” Dyes Pigments 112, 298–304 (2015).
[Crossref]

Electron. Lett. (3)

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in Topas cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber Bragg grating based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

J. Appl. Polym. Sci. (1)

T. Bremner, A. Rudin, and D. G. Cook, “Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics,” J. Appl. Polym. Sci. 41(78), 1617–1627 (1990).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

Nat. Mater. (2)

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of Topas and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Eng. (2)

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Opt. Express (12)

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[Crossref] [PubMed]

S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Opt. Express 20(1), 141–148 (2012).
[Crossref] [PubMed]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (2)

Proc. SPIE (2)

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, G. Carpintero, O. Bang, K. Sugden, and H. Lamela, “Fabry-Perot microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9531, 953116 (2015).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Sens. Actuators B Chem. (1)

S. Roy, C. Y. Yue, Z. Y. Wang, and L. Anand, “Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers,” Sens. Actuators B Chem. 161(1), 1067–1073 (2012).
[Crossref]

Other (4)

http://www.zeonex.com/optics.aspx .

Topas Advanced Polymers Inc, “Data Sheet - Topas 5013S-04,” (Topas Advanced Polymers Inc., 2015), http://www.topas.com/sites/default/files/TDS_5013S_04_e_1.pdf .

H. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).

D. J. Webb and K. Kalli, “Polymer Fiber Bragg Gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Material dispersion of Zeonex 480R. (b) Bulk material optical loss of Zeonex 480R. Inset: Zeonex step-like structure fabricated to measure the bulk loss.
Fig. 2
Fig. 2 (a) Measured transmission loss of bulk Zeonex 480R (dashed-black), single mode Zeonex 480R mPOF (black), single mode Topas 5013 mPOF (blue) [18], and single mode Topas 5013 SI-POF (red) [19]. Inset: microscope image of the fabricated Zeonex mPOF. (b) Bragg reflection of the Zeonex mPOF before and after annealing both normalized to the power of the non-annealed grating.
Fig. 3
Fig. 3 (a) Humidity response at 50 °C and (b) temperature response at 50% RH of the Zeonex mPOFBG.
Fig. 4
Fig. 4 Strain response of the Zeonex mPOFBG at ambient temperature and RH.

Metrics