Abstract

Violet light sensing of a micro fiber (MF) with cladding of titanium dioxide (TiO2) nanoparticles on the tapered region is demonstrated in this paper. The absorption characteristics of TiO2 can be tuned by violet light illumination. Significantly enhanced interaction between the propagating light and the TiO2 nanoparticles can be obtained via strong evanescent field coupling from the MF. Experimental results reveal that the transmitted optical power of the MF increases with an ~3 dB relative variation in broadband (1520-1620 nm) operation when the violet light is illuminated onto the TiO2 with power ranging from 0 mW to 11 mW. The device has a sensitivity of ~0.28 dB/mW (1520 nm), which indicates that the TiO2 holds great potential in photonic applications such as fiber-optic sensors or controlled devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing

Huihui Lu, Zhengwen Tian, Haiping Yu, Bing Yang, Guangyin Jing, Guozhen Liao, Jun Zhang, Jianhui Yu, Jieyuan Tang, Yunhan Luo, and Zhe Chen
Opt. Express 22(26) 32502-32508 (2014)

Reduced graphene oxide wrapped on microfiber and its light-control-light characteristics

Dongquan Li, Zhe Chen, Guanglei Chen, Si Hu, Yiting Wang, Wentao Qiu, Jiangli Dong, Jianhui Yu, Jun Zhang, Jieyuan Tang, Yunhan Luo, Heyuan Guan, and Huihui Lu
Opt. Express 25(5) 5415-5425 (2017)

Side polished fiber with coated graphene sheet and its control characteristic of violet light

Yiting Wang, Huaan Liu, Yuan Wang, Weiqia Qiu, Jun Zhang, Zhengwen Tian, Jianhui Yu, Jieyuan Tang, Yunhan Luo, Heyuan Guan, Zhe Chen, and Huihui Lu
Opt. Mater. Express 6(6) 2088-2094 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
    [Crossref]
  2. G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
    [Crossref]
  3. A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
    [Crossref]
  4. M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
    [Crossref]
  5. H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
    [Crossref] [PubMed]
  6. H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).
  7. P. Dhandapani, S. Maruthamuthu, and G. Rajagopal, “Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm,” J. Photochem. Photobiol. B 110, 43–49 (2012).
    [Crossref] [PubMed]
  8. K. N. Song, X. P. Han, and G. S. Shao, “Electronic properties of rutile TiO2 doped with 4D transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
    [Crossref]
  9. M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
    [Crossref] [PubMed]
  10. M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).
  11. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
    [Crossref] [PubMed]
  12. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37(4), 539–541 (2012).
    [Crossref] [PubMed]
  13. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
    [Crossref] [PubMed]
  14. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [Crossref]
  15. J. Lou, Y. Wang, and L. Tong, “Microfiber Optical Sensors: A Review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  16. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [Crossref] [PubMed]
  17. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  18. X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
    [Crossref] [PubMed]
  19. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
    [Crossref]
  20. B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
    [PubMed]
  21. L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
    [Crossref] [PubMed]
  22. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
    [Crossref]
  23. A. Chaves, R. S. Katiyar, and S. P. S. Porto, “Coupled modes with A1 symmetry in tetragonal BaTiO3,” Phys. Rev. B 10(8), 3522–3533 (1974).
    [Crossref]
  24. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
    [Crossref]
  25. A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
    [Crossref]
  26. S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
    [Crossref]
  27. M. C. Hoffmann and D. Turchinovich, “Semiconductor saturable absorbers for ultrafast terahertz signals,” Appl. Phys. Lett. 96(15), 151110 (2010).
    [Crossref]
  28. Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
    [Crossref]
  29. W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
    [Crossref]

2016 (2)

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

2014 (4)

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
[Crossref]

H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, J. Zhang, J. Yu, J. Tang, Y. Luo, and Z. Chen, “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Opt. Express 22(26), 32502–32508 (2014).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber Optical Sensors: A Review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

2013 (6)

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
[Crossref]

G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
[Crossref]

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

K. N. Song, X. P. Han, and G. S. Shao, “Electronic properties of rutile TiO2 doped with 4D transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

2012 (4)

P. Dhandapani, S. Maruthamuthu, and G. Rajagopal, “Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm,” J. Photochem. Photobiol. B 110, 43–49 (2012).
[Crossref] [PubMed]

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37(4), 539–541 (2012).
[Crossref] [PubMed]

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

2011 (3)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

2010 (2)

2008 (3)

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

2006 (3)

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
[PubMed]

L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
[Crossref] [PubMed]

1978 (1)

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

1974 (1)

A. Chaves, R. S. Katiyar, and S. P. S. Porto, “Coupled modes with A1 symmetry in tetragonal BaTiO3,” Phys. Rev. B 10(8), 3522–3533 (1974).
[Crossref]

Abdel-Mottaleb, M. S. A.

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Al-Kotb, M. S.

M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
[Crossref]

Anh, L. T.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Arregui, F. J.

Aulin, C.

L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
[Crossref] [PubMed]

Bahena, D.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Basak, J.

Benicewicz, B. C.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Bradley, J. D. B.

Briois, V.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Burgess, I. B.

Buso, D.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Cao, X. K.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Chaves, A.

A. Chaves, R. S. Katiyar, and S. P. S. Porto, “Coupled modes with A1 symmetry in tetragonal BaTiO3,” Phys. Rev. B 10(8), 3522–3533 (1974).
[Crossref]

Chen, Z.

Cheung, S. T. S.

Choy, J. T.

Colbeau-Justin, C.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Del Villar, I.

Deotare, P. B.

Dhandapani, P.

P. Dhandapani, S. Maruthamuthu, and G. Rajagopal, “Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm,” J. Photochem. Photobiol. B 110, 43–49 (2012).
[Crossref] [PubMed]

Divya, S.

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
[Crossref]

Djordjevic, S. S.

Elsayed, E. M.

M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
[Crossref]

Evans, C. C.

Fang, W. Q.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Fernandez, C. D.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Fujiki, Y.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Gan, J.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Gao, J. N.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gim, J.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Guan, B.

Guo, X.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Han, X. P.

K. N. Song, X. P. Han, and G. S. Shao, “Electronic properties of rutile TiO2 doped with 4D transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

He, X.

B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
[PubMed]

Herissan, A.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Hernáez, M.

Hoffmann, M. C.

M. C. Hoffmann and D. Turchinovich, “Semiconductor saturable absorbers for ultrafast terahertz signals,” Appl. Phys. Lett. 96(15), 151110 (2010).
[Crossref]

Hu, L. L.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Huo, Z. Y.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Izumi, F.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Jang, H. W.

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

Jia, Y.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Jiang, X. S.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Jing, G.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Käll, P. O.

L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
[Crossref] [PubMed]

Kang, J.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Katiyar, R. S.

A. Chaves, R. S. Katiyar, and S. P. S. Porto, “Coupled modes with A1 symmetry in tetragonal BaTiO3,” Phys. Rev. B 10(8), 3522–3533 (1974).
[Crossref]

Kim, J.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Kim, J. S.

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

Kowalska, E.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Lehoux, A.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Li, B.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Li, N.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Li, Y.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

Li, Y. F.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Li, Y. H.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Li, Z.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Liao, G.

Liao, J. J.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Liao, L.

Lin, S. W.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Lira-Cantu, M.

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Liu, B. S.

B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
[PubMed]

Liu, H. F.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Loncar, M.

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber Optical Sensors: A Review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Lou, J. Y.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Lu, H.

Lu, X.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Luo, Y.

Manera, M. G.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Martucci, A.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Maruthamuthu, S.

P. Dhandapani, S. Maruthamuthu, and G. Rajagopal, “Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm,” J. Photochem. Photobiol. B 110, 43–49 (2012).
[Crossref] [PubMed]

Mathew, V.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Matias, I. R.

Mattei, G.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Mazur, E.

Mazzoldi, P.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Méndez-Medrano, M. G.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Moon, H. G.

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

Mujeeb, A.

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
[Crossref]

Mulvaney, P.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Nampoori, V. P. N.

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
[Crossref]

Ohsaka, T.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Ohtani, B.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Ojamäe, L.

L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
[Crossref] [PubMed]

Park, H. H.

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

Paul, B. J.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Pedersen, H.

L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
[Crossref] [PubMed]

Perez-Juste, J.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Porto, S. P. S.

A. Chaves, R. S. Katiyar, and S. P. S. Porto, “Coupled modes with A1 symmetry in tetragonal BaTiO3,” Phys. Rev. B 10(8), 3522–3533 (1974).
[Crossref]

Radhakrishnan, P.

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
[Crossref]

Rai, A. K.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Rajagopal, G.

P. Dhandapani, S. Maruthamuthu, and G. Rajagopal, “Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm,” J. Photochem. Photobiol. B 110, 43–49 (2012).
[Crossref] [PubMed]

Rashad, M. M.

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
[Crossref]

Rella, R.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Remita, H.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Rodriguez-Lopez, J. L.

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

Rungta, A.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Schadler, L. S.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Shalan, A. E.

M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
[Crossref]

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Shang, K.

Shao, G. S.

K. N. Song, X. P. Han, and G. S. Shao, “Electronic properties of rutile TiO2 doped with 4D transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

Siegel, R. W.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Song, J.

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

Song, K. N.

K. N. Song, X. P. Han, and G. S. Shao, “Electronic properties of rutile TiO2 doped with 4D transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

Spadavecchia, J.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Tang, J.

Tao, P.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Tian, Z.

Tong, L.

J. Lou, Y. Wang, and L. Tong, “Microfiber Optical Sensors: A Review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

Tong, L. M.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Tong, Y.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Turchinovich, D.

M. C. Hoffmann and D. Turchinovich, “Semiconductor saturable absorbers for ultrafast terahertz signals,” Appl. Phys. Lett. 96(15), 151110 (2010).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vasanelli, L.

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

Vienne, G.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Viswanath, A.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

Wang, C. Z.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, G.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Wang, X. L.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Wang, Y.

J. Lou, Y. Wang, and L. Tong, “Microfiber Optical Sensors: A Review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Xiao, T. C.

G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
[Crossref]

Xing, X.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Yan, Z. F.

G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
[Crossref]

Yang, B.

Yang, B. L.

G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
[Crossref]

Yang, G. D.

G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
[Crossref]

Yang, H. G.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Yang, Q.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Yang, Y.

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Yao, X. D.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, S. J. B.

Yoon, S. J.

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

Yu, H.

Yu, J.

Yu, M.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Yu, Y. H.

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Zamarreño, C. R.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhai, T.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Zhang, H. M.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Zhang, J.

Zhang, J. J.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, H. J.

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

Zhao, Q. N.

B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
[PubMed]

Zhao, X. J.

B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
[PubMed]

Zhu, H.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Zi, F.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

M. C. Hoffmann and D. Turchinovich, “Semiconductor saturable absorbers for ultrafast terahertz signals,” Appl. Phys. Lett. 96(15), 151110 (2010).
[Crossref]

Chin. Phys. B (1)

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Electronic and optical properties of TiO2 and its polymorphs by Z-scan method,” Chin. Phys. B 23(8), 084203 (2014).
[Crossref]

Electrochim. Acta (2)

A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, and J. Kim, “Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries,” Electrochim. Acta 90, 112–118 (2013).
[Crossref]

A. E. Shalan, M. M. Rashad, Y. H. Yu, M. Lira-Cantu, and M. S. A. Abdel-Mottaleb, “Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells,” Electrochim. Acta 89, 469–478 (2013).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

B. S. Liu, X. He, X. J. Zhao, and Q. N. Zhao, “The surface states and the electron-hole pair recombination of TiO2 nanopowders,” Guangpuxue Yu Guangpu Fenxi 26(2), 208–212 (2006).
[PubMed]

J. Alloys Compd. (3)

M. M. Rashad, E. M. Elsayed, M. S. Al-Kotb, and A. E. Shalan, “The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles,” J. Alloys Compd. 581, 71–78 (2013).
[Crossref]

G. D. Yang, Z. F. Yan, T. C. Xiao, and B. L. Yang, “Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange,” J. Alloys Compd. 580, 15–22 (2013).
[Crossref]

K. N. Song, X. P. Han, and G. S. Shao, “Electronic properties of rutile TiO2 doped with 4D transition metals: First-principles study,” J. Alloys Compd. 551, 118–124 (2013).
[Crossref]

J. Colloid Interface Sci. (1)

L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interface Sci. 296(1), 71–78 (2006).
[Crossref] [PubMed]

J. Mater. Chem. (1)

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

W. Q. Fang, X. L. Wang, H. M. Zhang, Y. Jia, Z. Y. Huo, Z. Li, H. J. Zhao, H. G. Yang, and X. D. Yao, “Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping,” J. Mater. Chem. A Mater. Energy Sustain. 2(10), 3513–3520 (2014).
[Crossref]

J. Photochem. Photobiol. B (1)

P. Dhandapani, S. Maruthamuthu, and G. Rajagopal, “Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm,” J. Photochem. Photobiol. B 110, 43–49 (2012).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodriguez-Lopez, and H. Remita, “Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis,” J. Phys. Chem. C 120(9), 5143–5154 (2016).
[Crossref]

J. Raman Spectrosc. (1)

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Nano Lett. (2)

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano Lett. 12(3), 1690–1696 (2012).
[Crossref] [PubMed]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

A. Chaves, R. S. Katiyar, and S. P. S. Porto, “Coupled modes with A1 symmetry in tetragonal BaTiO3,” Phys. Rev. B 10(8), 3522–3533 (1974).
[Crossref]

Rsc Adv. (1)

Y. Yang, J. J. Liao, Y. F. Li, X. K. Cao, N. Li, C. Z. Wang, and S. W. Lin, “Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study,” Rsc Adv. 6(52), 46871–46878 (2016).
[Crossref]

Sensor Actuat. Biol. Chem. (2)

M. G. Manera, J. Spadavecchia, D. Buso, C. D. Fernandez, G. Mattei, A. Martucci, P. Mulvaney, J. Perez-Juste, R. Rella, L. Vasanelli, and P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensor Actuat. Biol. Chem. 132, 107–115 (2008).

H. G. Moon, H. W. Jang, J. S. Kim, H. H. Park, and S. J. Yoon, “A route to high sensitivity and rapid response Nb2O5-based gas sensors: TiO2 doping, surface embossing, and voltage optimization,” Sensor Actuat. Biol. Chem. 153, 37–43 (2011).

Sensors (Basel) (1)

J. Lou, Y. Wang, and L. Tong, “Microfiber Optical Sensors: A Review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Raman spectrum of TiO2.
Fig. 2
Fig. 2 XRD pattern of TiO2.
Fig. 3
Fig. 3 Absorption spectrum of TiO2.
Fig. 4
Fig. 4 Three dimensional schematic of basin used for self-assembled TiO2 and configuration of a fixed MF on a glass slide.
Fig. 5
Fig. 5 Variation of transmitted optical power in an MF during the deposition of TN onto the waist of MF taper: (a) waist with a diameter of 25 μm; (b) waist with a diameter of 14 μm; (c) waist with a diameter of 7 μm.
Fig. 6
Fig. 6 (a) SEM image of MF with TN; (b) enlarged view for the region marked by a dotted line.
Fig. 7
Fig. 7 Schematic experimentally setup for the MF with TN.
Fig. 8
Fig. 8 Variation of transmitted optical power in pure MF as different power of violet light illuminated.
Fig. 9
Fig. 9 Variation of transmitted optical power through the MF with TN with different illuminating violet power.
Fig. 10
Fig. 10 Relative variation power of the MF with TN with different violet laser power.

Metrics