Abstract

Enhancement of the thermal diffusion rates of Cr and Fe in ZnSe/ZnS was studied using two different approaches. Enhancement of Cr diffusion in ZnSe was achieved by application of excess Zn atmosphere during the thermal diffusion of Cr, where ~2.2 times improvement in the diffusion coefficient was seen over the standard diffusion technique. Also, the diffusion coefficient of Fe in ZnSe and ZnS was improved by 13 and 14 times, respectively, when diffusion was done under hot isostatic pressing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals

Ronald W. Stites, Sean A. McDaniel, Jacob O. Barnes, Douglas M. Krein, John H. Goldsmith, Shekhar Guha, and Gary Cook
Opt. Mater. Express 6(10) 3339-3353 (2016)

Increasing the performance of an Fe:ZnSe laser using a hot isostatic press

Jonathan W. Evans, Ronald W. Stites, and Thomas R. Harris
Opt. Mater. Express 7(12) 4296-4303 (2017)

Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals

Alán Martinez, Lamario Williams, Vladimir Fedorov, and Sergey Mirov
Opt. Mater. Express 5(3) 558-565 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).
  2. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
    [Crossref] [PubMed]
  3. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
    [Crossref]
  4. A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals,” Opt. Mater. Express 5(3), 558–565 (2015).
    [Crossref]
  5. K. Bentley and R. Kawai, University of Alabama at Birmingham, personal, personal communication.
  6. U. M. Gosele, “Fast Diffusion in Semiconductors,” Annu. Rev. Mater. Sci. 18(1), 257–282 (1988).
    [Crossref]
  7. A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
    [Crossref]
  8. J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
    [Crossref]
  9. S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
    [Crossref]
  10. L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).
  11. M. Aven and H. H. Woodbury, “Purification of II-VI compounds by solvent extraction,” Appl. Phys. Lett. 1(3), 53 (1962).
    [Crossref]
  12. G. H. Blount, A. C. Sanderson, and R. H. Bube, “Effects of Annealing on the Photoelectronic Properties of ZnS Crystals,” J. Appl. Phys. 38(11), 4409 (1967).
    [Crossref]
  13. A. V. Savitskii, V. I. Tkachuk, and P. N. Tkachuk, Sov. Phys. Semicond.26, 536 (1992).
  14. E. V. Karaksina, V. B. Ikonnikov, and E. M. Gavrishchuk, “Recrystallization Behavior of ZnS during Hot Isostatic Pressing,” Inorg. Mater. 43(5), 452–454 (2007).
    [Crossref]
  15. D. R. Vij and N. Singh, Luminescence and Related Properties if II-VI Semiconductors (Nova Science Publishers, 1998), p 172.

2016 (3)

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

2015 (2)

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals,” Opt. Mater. Express 5(3), 558–565 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

2010 (1)

L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).

2007 (1)

E. V. Karaksina, V. B. Ikonnikov, and E. M. Gavrishchuk, “Recrystallization Behavior of ZnS during Hot Isostatic Pressing,” Inorg. Mater. 43(5), 452–454 (2007).
[Crossref]

2002 (1)

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

2001 (1)

S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

1988 (1)

U. M. Gosele, “Fast Diffusion in Semiconductors,” Annu. Rev. Mater. Sci. 18(1), 257–282 (1988).
[Crossref]

1967 (1)

G. H. Blount, A. C. Sanderson, and R. H. Bube, “Effects of Annealing on the Photoelectronic Properties of ZnS Crystals,” J. Appl. Phys. 38(11), 4409 (1967).
[Crossref]

1962 (1)

M. Aven and H. H. Woodbury, “Purification of II-VI compounds by solvent extraction,” Appl. Phys. Lett. 1(3), 53 (1962).
[Crossref]

Adetunji, O. O.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

Aven, M.

M. Aven and H. H. Woodbury, “Purification of II-VI compounds by solvent extraction,” Appl. Phys. Lett. 1(3), 53 (1962).
[Crossref]

Blount, G. H.

G. H. Blount, A. C. Sanderson, and R. H. Bube, “Effects of Annealing on the Photoelectronic Properties of ZnS Crystals,” J. Appl. Phys. 38(11), 4409 (1967).
[Crossref]

Bube, R. H.

G. H. Blount, A. C. Sanderson, and R. H. Bube, “Effects of Annealing on the Photoelectronic Properties of ZnS Crystals,” J. Appl. Phys. 38(11), 4409 (1967).
[Crossref]

Burger, A.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

Chattopadhyay, K.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

Dormidonov, A. E.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals,” Opt. Mater. Express 5(3), 558–565 (2015).
[Crossref]

Firsov, K. N.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Gapontsev, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

Gavrishchuk, E. M.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

E. V. Karaksina, V. B. Ikonnikov, and E. M. Gavrishchuk, “Recrystallization Behavior of ZnS during Hot Isostatic Pressing,” Inorg. Mater. 43(5), 452–454 (2007).
[Crossref]

Gosele, U. M.

U. M. Gosele, “Fast Diffusion in Semiconductors,” Annu. Rev. Mater. Sci. 18(1), 257–282 (1988).
[Crossref]

Ikonnikov, V. B.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

E. V. Karaksina, V. B. Ikonnikov, and E. M. Gavrishchuk, “Recrystallization Behavior of ZnS during Hot Isostatic Pressing,” Inorg. Mater. 43(5), 452–454 (2007).
[Crossref]

Karaksina, E. V.

E. V. Karaksina, V. B. Ikonnikov, and E. M. Gavrishchuk, “Recrystallization Behavior of ZnS during Hot Isostatic Pressing,” Inorg. Mater. 43(5), 452–454 (2007).
[Crossref]

Kazantsev, S. Yu.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Kononov, I. G.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Kotereva, T. V.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Kulyuk, L. L.

L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).

Martinez, A.

Martyshkin, D.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

Mirov, M.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

Mirov, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals,” Opt. Mater. Express 5(3), 558–565 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

Moskalev, I.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

Ndap, J.-O.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

Nedeoglo, D. D.

L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).

Sanderson, A. C.

G. H. Blount, A. C. Sanderson, and R. H. Bube, “Effects of Annealing on the Photoelectronic Properties of ZnS Crystals,” J. Appl. Phys. 38(11), 4409 (1967).
[Crossref]

Savin, D. V.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Savitskii, A. V.

A. V. Savitskii, V. I. Tkachuk, and P. N. Tkachuk, Sov. Phys. Semicond.26, 536 (1992).

Siminel, A. V.

L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).

Smolski, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

Sushkevich, K. D.

L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).

Timofeeva, N. A.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Tkachuk, P. N.

A. V. Savitskii, V. I. Tkachuk, and P. N. Tkachuk, Sov. Phys. Semicond.26, 536 (1992).

Tkachuk, V. I.

A. V. Savitskii, V. I. Tkachuk, and P. N. Tkachuk, Sov. Phys. Semicond.26, 536 (1992).

Vasilyev, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

Wei, S.-H.

S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Williams, L.

Woodbury, H. H.

M. Aven and H. H. Woodbury, “Purification of II-VI compounds by solvent extraction,” Appl. Phys. Lett. 1(3), 53 (1962).
[Crossref]

Zakrevskiy, A.

Zelmon, D. E.

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

Zhang, S. B.

S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Zunger, A.

S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Annu. Rev. Mater. Sci. (1)

U. M. Gosele, “Fast Diffusion in Semiconductors,” Annu. Rev. Mater. Sci. 18(1), 257–282 (1988).
[Crossref]

Appl. Phys. B (1)

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Appl. Phys. Lett. (1)

M. Aven and H. H. Woodbury, “Purification of II-VI compounds by solvent extraction,” Appl. Phys. Lett. 1(3), 53 (1962).
[Crossref]

IEEE. J. of Selected Topics in QE (1)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides”, IEEE. J. of Selected Topics in QE 21(1), 1601719 (2015).

Inorg. Mater. (1)

E. V. Karaksina, V. B. Ikonnikov, and E. M. Gavrishchuk, “Recrystallization Behavior of ZnS during Hot Isostatic Pressing,” Inorg. Mater. 43(5), 452–454 (2007).
[Crossref]

J. Appl. Phys. (1)

G. H. Blount, A. C. Sanderson, and R. H. Bube, “Effects of Annealing on the Photoelectronic Properties of ZnS Crystals,” J. Appl. Phys. 38(11), 4409 (1967).
[Crossref]

J. Cryst. Growth (1)

J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe,” J. Cryst. Growth 240(1–2), 176–184 (2002).
[Crossref]

Laser Tech. J. (1)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR laser technology,” Laser Tech. J. 13(4), 1–5 (2016).
[Crossref]

Moldavian J. of the Physical Sciences (1)

L. L. Kulyuk, D. D. Nedeoglo, A. V. Siminel, and K. D. Sushkevich, “Effect of annealing of ZnSe:Cr crystals in Bi(Zn) melt on the intensity of radiation bands of Cr ions,” Moldavian J. of the Physical Sciences 9(2), 138–140 (2010).

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. B. Zhang, S.-H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Other (3)

K. Bentley and R. Kawai, University of Alabama at Birmingham, personal, personal communication.

A. V. Savitskii, V. I. Tkachuk, and P. N. Tkachuk, Sov. Phys. Semicond.26, 536 (1992).

D. R. Vij and N. Singh, Luminescence and Related Properties if II-VI Semiconductors (Nova Science Publishers, 1998), p 172.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for measurement of spatial distribution of Cr2+ ions.
Fig. 2
Fig. 2 Optical density as a function of distance from the crystal facet. A) standard thermal diffusion method and B) thermal diffusion in presence of Zn vapor.
Fig. 3
Fig. 3 Absorption coefficient of Cr2 + in ZnSe A) before annealing (i), after annealing in vapor of Zn and O2 (ii), B) before annealing (i), sample after annealing in Zn liquid (ii).
Fig. 4
Fig. 4 Optical density as a function of distance from the crystal facet in ZnS annealed at 1300°C, 1000 atm (A) and 3000 atm (B).
Fig. 5
Fig. 5 Optical Density as a function of distance from the crystal facet in ZnSe annealed at 1300°C, and 3000 atm (A). Absorption spectrum of Fe:ZnSe crystal measured in the direction of diffusion after polishing-off (B).
Fig. 6
Fig. 6 Normalized optical density as a function of polished-off thickness ZnS (A) and ZnSe (B).
Fig. 7
Fig. 7 XRD pattern of HIP treated of predominantly W (top A) and ZB (top B) ZnS. The standard patterns of W and ZB are from JCPDS card 79-2204 and 77-2100, respectively A and B bottom.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C(x,t)= M πDt exp( x 2 4Dt )
2CrSe(s)+Zn(g)+2ZnSe(g)C r 2 S e 3 (g)+ZnSe(g)
C r 2 S e 3 (g)+ O 2 (g)C r 2 O 3 (s)+6Se(g)
OD(z)= z σC(x,t)dx=σM[ 1erf( z 4Dt ) ]
erf(x)= 2 π 0 x exp( ξ 2 )dξ
D= D 0 exp( E a kT )

Metrics