Abstract

While vanadium dioxide (VO2) is one of the most extensively studied highly correlated materials, there are intriguing similarities and differences worth exploring in another highly correlated oxide, niobium dioxide (NbO2). Both materials exhibit a thermally-induced first-order insulator-metal transition at a material-dependent critical temperature, which is considerably higher in NbO2 than in VO2 – approximately 1080 K and 340 K in bulk, respectively. This transition, evidenced by up to 6 orders of magnitude change in DC and optical conductivities, can also be induced in VO2 via photo-doping on a sub-picosecond timescale. Here, we present the first ultrafast pump-probe studies on the optically-induced transition of NbO2 thin films and the comparison with similar VO2 films. It is observed that NbO2 films transition faster and exhibit significantly faster recovery time than VO2 films of similar thickness and microstructure, showcasing that NbO2 is a promising material for next generation high-speed optoelectronic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant impact of self-photothermal on light-induced ultrafast insulator-to-metal transition in VO2 nanofilms at terahertz frequency

Zhao-Hui Zhai, Si-Chao Chen, Liang-Hui Du, Sen-Cheng Zhong, Wanxia Huang, Ze-Ren Li, Harald Schneider, Qiwu Shi, and Li-Guo Zhu
Opt. Express 26(21) 28051-28066 (2018)

Insulator to metal transition induced by surface plasmon polaritons in VO2/Au thin films

S. E. Madaras, J. Creeden, S. Kittiwatanakul, J. Lu, I. Novikova, and R. A. Lukaszew
Opt. Express 26(20) 25657-25666 (2018)

Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

Emily Sistrunk, Jakob Grilj, Jaewoo Jeong, Mahesh G. Samant, Alexander X. Gray, Hermann A. Dürr, Stuart S. P. Parkin, and Markus Gühr
Opt. Express 23(4) 4340-4347 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Yoshiki and T. Tanabe, “All-optical switching using Kerr effect in a silica toroid microcavity,” Opt. Express 22(20), 24332–24341 (2014).
    [Crossref] [PubMed]
  2. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
    [Crossref]
  3. S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
    [Crossref]
  4. G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A, Pure Appl. Opt. 5(1), R1–R15 (2003).
    [Crossref]
  5. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  6. D. I. Khomskii, Transtion Metal Compounds (Cambridge University 2014).
  7. L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
    [Crossref]
  8. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
    [Crossref]
  9. A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70, 161102 (2004).
  10. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
    [Crossref]
  11. M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
    [Crossref]
  12. M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
    [Crossref]
  13. G. C. Vezzoli, “Recovery curve for threshold‐switching NbO2,” J. Appl. Phys. 50(10), 6390 (1979).
    [Crossref]
  14. G. C. Vezzoli, “On‐state decay in NbO2: Relationship to recombination and to nonlinear I‐V,” J. Appl. Phys. 51(5), 2693 (1980).
    [Crossref]
  15. S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
    [Crossref]
  16. T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
    [Crossref]
  17. A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
    [Crossref]
  18. A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
    [Crossref]
  19. V. Eyert, “The metal-insulator transition of NbO2: An embedded Peierls instability,” Europhys. Lett. 58(6), 851–856 (2002).
    [Crossref]
  20. A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
    [Crossref]
  21. N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
    [Crossref]
  22. Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
    [Crossref]
  23. L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
    [Crossref] [PubMed]
  24. T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
    [Crossref]
  25. V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
    [Crossref] [PubMed]
  26. D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
    [Crossref] [PubMed]
  27. J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
    [Crossref] [PubMed]
  28. E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
    [Crossref]
  29. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
    [Crossref] [PubMed]
  30. L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
    [Crossref]
  31. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  32. J. Shah, Hot Carriers in Semiconductor Nanostructures, Physics and Applications (Academic 1992).
  33. J. M. Klopf and P. M. Norris, “Subpicosecond observation of photoexcited carrier thermalization and relaxation in InP-based films,” Int. J. Thermophys. 26(1), 127–140 (2005).
    [Crossref]
  34. M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
    [Crossref]
  35. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  36. L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
    [Crossref]

2015 (6)

S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
[Crossref]

S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
[Crossref]

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

2014 (8)

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

W. Yoshiki and T. Tanabe, “All-optical switching using Kerr effect in a silica toroid microcavity,” Opt. Express 22(20), 24332–24341 (2014).
[Crossref] [PubMed]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

2013 (1)

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

2012 (2)

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

2008 (2)

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

2007 (3)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

2005 (1)

J. M. Klopf and P. M. Norris, “Subpicosecond observation of photoexcited carrier thermalization and relaxation in InP-based films,” Int. J. Thermophys. 26(1), 127–140 (2005).
[Crossref]

2003 (1)

G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A, Pure Appl. Opt. 5(1), R1–R15 (2003).
[Crossref]

2002 (1)

V. Eyert, “The metal-insulator transition of NbO2: An embedded Peierls instability,” Europhys. Lett. 58(6), 851–856 (2002).
[Crossref]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

2000 (1)

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
[Crossref]

1999 (1)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
[Crossref]

1994 (1)

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
[Crossref]

1980 (1)

G. C. Vezzoli, “On‐state decay in NbO2: Relationship to recombination and to nonlinear I‐V,” J. Appl. Phys. 51(5), 2693 (1980).
[Crossref]

1979 (1)

G. C. Vezzoli, “Recovery curve for threshold‐switching NbO2,” J. Appl. Phys. 50(10), 6390 (1979).
[Crossref]

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Aetukuri, N. B.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Arenholz, E.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Averitt, R. D.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bandulet, H.-C.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Bartynski, R. A.

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

Basov, D. N.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Bolzan, A. A.

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
[Crossref]

Borisov, P.

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

Brassard, D.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Brehm, M.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bristow, A. D.

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

Bruhács, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Cavalleri, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Chae, B. G.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

Chae, B.-G.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Chaker, M.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Chatelain, R. P.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Chen, B.

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Clavero, C.

Cocker, T. L.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

Comes, R. B.

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

Cossale, M.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Cudazzo, P.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

de Almeida, L. A. L.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
[Crossref]

Deep, G. S.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
[Crossref]

Demkov, A. A.

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

Drouard, M.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Dürr, H. A.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

El Khakani, M. A.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Elliman, R. G.

S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
[Crossref]

Eyert, V.

V. Eyert, “The metal-insulator transition of NbO2: An embedded Peierls instability,” Europhys. Lett. 58(6), 851–856 (2002).
[Crossref]

Fernández, F.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Fong, C.

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
[Crossref]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Fourmaux, S.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Fujimori, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Gao, L.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Gatti, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Giannetti, C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Gray, A. X.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Haglund, R. F.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Hao, Z.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Hegmann, F. A.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

Hendaoui, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Herzog, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Hilton, D. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Ho, P.-C.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Hollins, R. C.

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
[Crossref]

Holloway, G.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

Howard, C. J.

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
[Crossref]

Jenkins, C. A.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Joshi, T.

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

Keilmann, F.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kennedy, B. J.

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
[Crossref]

Kieffer, J. C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kieffer, J.-C.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

Kim, B.-J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, H. T.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

Kim, H.-T.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kittiwatanakul, S.

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Klopf, J. M.

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

J. M. Klopf and P. M. Norris, “Subpicosecond observation of photoexcited carrier thermalization and relaxation in InP-based films,” Int. J. Thermophys. 26(1), 127–140 (2005).
[Crossref]

Kukreja, R.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Laverock, J.

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Lederman, D.

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

Li, Z. Q.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

Lima, A. M. N.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
[Crossref]

Liu, H.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Liu, X.

S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
[Crossref]

Lu, J.

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Lu, J. W.

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Lukaszew, R. A.

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Lysenko, S.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Madaras, E.

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

Madaras, S.

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

Maple, M. B.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Marvel, R. E.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

McGahan, C. L.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Morrison, V. R.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Nandi, S. K.

S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
[Crossref]

Neff, H.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
[Crossref]

Niu, Y. R.

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Norris, P. M.

J. M. Klopf and P. M. Norris, “Subpicosecond observation of photoexcited carrier thermalization and relaxation in InP-based films,” Int. J. Thermophys. 26(1), 127–140 (2005).
[Crossref]

Novikova, I.

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Nunley, T. N.

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

O’Hara, A.

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

Ohldag, H.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Onoda, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Parkin, S. S. P.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Parmigiani, F.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Perumbilavil, S.

S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
[Crossref]

Philip, R.

S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
[Crossref]

Podzorov, V.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

Posadas, A. B.

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

Prasankumar, R. P.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Priya Rose, T.

S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
[Crossref]

Qazilbash, M. M.

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Radue, E.

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Rangan, S.

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

Reid, A. H.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Rini, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Roche, K. P.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Rodriguez-Vega, M.

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

Rossi, E.

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

Rúa, A.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Rubio, A.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Samant, M. G.

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Sankar, P.

S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
[Crossref]

Schoenlein, R. W.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Senty, T. R.

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Simons, M. T.

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

Siwick, B. J.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Smith, K. E.

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stähler, J.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Steinmeyer, G.

G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A, Pure Appl. Opt. 5(1), R1–R15 (2003).
[Crossref]

Tanabe, T.

Taylor, A. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Titova, L. V.

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

Tiwari, K. L.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Venkatachalam, D. K.

S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
[Crossref]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vezzoli, G. C.

G. C. Vezzoli, “On‐state decay in NbO2: Relationship to recombination and to nonlinear I‐V,” J. Appl. Phys. 51(5), 2693 (1980).
[Crossref]

G. C. Vezzoli, “Recovery curve for threshold‐switching NbO2,” J. Appl. Phys. 50(10), 6390 (1979).
[Crossref]

Vikhnin, V.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Wall, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Wang, L.

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

Wegkamp, D.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Williams, G. P.

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

Wolf, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Wolf, S. A.

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Xian, L.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

Yoshiki, W.

Yun, S. J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zakharov, A. A.

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Zollner, S.

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Adv. Opt. Mat. (1)

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mat. 2(1), 30–33 (2014).
[Crossref]

Adv. Opt. Mater. (1)

L. Wang, I. Novikova, J. M. Klopf, S. Madaras, G. P. Williams, E. Madaras, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Distinct length scales in the VO2 metal–insulator transition revealed by bi-chromatic optical probing,” Adv. Opt. Mater. 2(1), 30–33 (2014).
[Crossref]

Appl. Phys. Lett. (5)

S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Appl. Phys. Lett. 107(5), 051104 (2015).
[Crossref]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett. 104(9), 092901 (2014).
[Crossref]

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, and H. Neff, “Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold,” Appl. Phys. Lett. 77(26), 4365–4367 (2000).
[Crossref]

M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim, and D. N. Basov, “Electrostatic modification of infrared response in gated structures based on VO2,” Appl. Phys. Lett. 92(24), 241906 (2008).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
[Crossref]

Europhys. Lett. (1)

V. Eyert, “The metal-insulator transition of NbO2: An embedded Peierls instability,” Europhys. Lett. 58(6), 851–856 (2002).
[Crossref]

Int. J. Thermophys. (1)

J. M. Klopf and P. M. Norris, “Subpicosecond observation of photoexcited carrier thermalization and relaxation in InP-based films,” Int. J. Thermophys. 26(1), 127–140 (2005).
[Crossref]

J. Appl. Phys. (3)

A. O’Hara, T. N. Nunley, A. B. Posadas, S. Zollner, and A. A. Demkov, “Electronic and optical properties of NbO2,” J. Appl. Phys. 116(21), 213705 (2014).
[Crossref]

G. C. Vezzoli, “Recovery curve for threshold‐switching NbO2,” J. Appl. Phys. 50(10), 6390 (1979).
[Crossref]

G. C. Vezzoli, “On‐state decay in NbO2: Relationship to recombination and to nonlinear I‐V,” J. Appl. Phys. 51(5), 2693 (1980).
[Crossref]

J. Opt. (1)

E. Radue, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, E. Rossi, R. A. Lukaszew, and I. Novikova, “Substrate-induced microstructure effects on the dynamics of the photo-induced metal–insulator transition in VO2 thin films,” J. Opt. 17(2), 025503 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A, Pure Appl. Opt. 5(1), R1–R15 (2003).
[Crossref]

J. Phys. D Appl. Phys. (2)

S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, “Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration,” J. Phys. D Appl. Phys. 48(19), 195105 (2015).
[Crossref]

T. Joshi, T. R. Senty, P. Borisov, A. D. Bristow, and D. Lederman, “Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices,” J. Phys. D Appl. Phys. 48(33), 335308 (2015).
[Crossref]

J. Solid State Chem. (1)

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “A powder neutron diffraction study of semiconducting and metallic niobium dioxide,” J. Solid State Chem. 113(1), 9–14 (1994).
[Crossref]

J. Vac. Sci. Technol. A (1)

Y. Wang, R. B. Comes, S. Kittiwatanakul, S. A. Wolf, and J. Lu, “Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 33(2), 021516 (2015).
[Crossref]

Nat. Phys. (1)

N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant, and S. S. P. Parkin, “Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys. 9(10), 661–666 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (4)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

M. Rodriguez-Vega, M. T. Simons, E. Radue, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. A. Lukaszew, I. Novikova, and E. Rossi, “Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO2 thin films,” Phys. Rev. B 92(11), 115420 (2015).
[Crossref]

T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85(15), 155120 (2012).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Phys. Rev. Lett. (4)

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[Crossref] [PubMed]

J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, “Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2.,” Phys. Rev. Lett. 113(21), 216402 (2014).
[Crossref] [PubMed]

Science (2)

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Other (3)

J. Shah, Hot Carriers in Semiconductor Nanostructures, Physics and Applications (Academic 1992).

A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70, 161102 (2004).

D. I. Khomskii, Transtion Metal Compounds (Cambridge University 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 High-angle 2θ-ω scans of the NbO2 (top) and VO2 (bottom) samples studied. The dashed line indicates the position of the bulk substrate reflection, centered at 2θ = 41.685°. The NbO2(440) peak is centered at 2θ = 37.223°, while the VO2(020) peak is centered at 2θ = 40.069°.
Fig. 2
Fig. 2 Schematic of the ultrafast pump-probe setup.
Fig. 3
Fig. 3 Pump-probe measurements and fits for the lowest fluence at which the IMT was seen in each material. (a) Fitted data showing the initial response and recovery of the film. Data are plotted as disconnected points, while fits are solid lines. (b) Full-track data.
Fig. 4
Fig. 4 Pump-probe measurements at a pump fluence of 70.0 mJ/cm2, when the structural transition begins in the VO2 film, causing the signal to become larger than that of the NbO2 film.
Fig. 5
Fig. 5 Scans of NbO2 with pump fluences ranging from 8.8 mJ/cm2 to 422 mJ/cm2. (a) Fitted data showing the initial response and recovery of the film. Data are plotted as disconnected points, while fits are solid lines. (b) Full-track data.
Fig. 6
Fig. 6 Scan of fully-transitioned VO2. (a) Fitted data showing the initial response of the film. Data are plotted as disconnected points, while fits are solid lines. (b) Full-track data.
Fig. 7
Fig. 7 Normalized scans of NbO2 and VO2 at 422 mJ/cm2, the highest fluence achieved without damaging the samples. (a) Fitted data showing the initial response of the films. Data are plotted as disconnected points, while fits are solid lines. (b) Full-track data.

Tables (2)

Tables Icon

Table 1 Fit parameters for the scans shown in Figs. 3, 5, and 6. The two highlighted columns correspond to the plots shown in Fig. 7.

Tables Icon

Table 2 Results of the sensitivity study on Eq. (1), showing the percent change in the RMS value of the fit after changing the given parameter by ± 10%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔR R = A 0 * 1 2 ( 1+Erf( t t off t p ) )*( A 1 e ( t t off t 1 ) + A 2 e ( t t off t 2 ) + A 3 e ( t t off t3 ) ),

Metrics